Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Laser-Induced Phosphorescence Thermography of Combustion Chamber Wall of Diesel Engine

2008-04-14
2008-01-1069
In order to investigate the mechanism of heat transfer on the chamber wall of direct-injection diesel engines, 2-D temperature imaging and heat flux measurement in the flame impinging region on the chamber wall were conducted using laser-induced phosphorescence technique. The temperature of the chamber wall surface was measured by the calibrated intensity variation of the 355nm-excited laser-induced phosphorescence from an electrophoretically deposited thin layer of La2O2S:Eu phosphor on a quartz glass plate placed in a rapid compression and expansion machine (RCEM). Instantaneous 2-D images of wall temperature at different timings after start of injection and time-resolved (10kHz) heat flux near the flame impinging region were obtained for combusting and non-combusting diesel sprays with impinging distance of 23.4mm at different injection pressures (80 and 120MPa).
Technical Paper

Infrared High-Speed Thermography of Combustion Chamber Wall Impinged by Diesel Spray Flame

2023-09-29
2023-32-0087
As a new method to examine the extremely unsteady and spatially varying wall heat transfer phenomena on diesel engine combustion chamber wall, high-speed imaging of infrared thermal radiation from the chromium coated window surface impinged by a diesel spray flame has been conducted in a constant volume combustion chamber. The infrared radiation from a back surface of the chromium layer was successfully visualized at 10kHz frame rate and 128 × 128 pixel resolution through the window. The distributions of infrared radiation, temperature and heat flux exhibited coherent and streaky structure with radial stripes extending and waving from a stagnation point likely reflecting the near-wall turbulent structure in a wall impinging diesel flame. The experiments were conducted with various parameters such as fuel injection pressure, ambient gas oxygen concentration, wall impinging distance, wall surface roughness and wall materials.
X