Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Misfiring Effects on Scavenging Flow at Scavenging Port and Exhaust Pipe in a Small Two-Stroke-Engine

1993-03-01
930498
Misfiring cycles were detected by a conditional sampling method to demonstrate the differences between firing and misfiring of the scavenging flow characteristics at the scavenging port and exhaust pipe using LDV method. The results show that the flow at the scavenging port was not influenced significantly by misfiring, but the blowdown flow in the exhaust pipe greatly depended on the combustion status. The blow-down flow of fired cycles at a light-load condition was very similar to the flow at a full-load condition. It was also found that measured flow characteristics at partial load should not be considered by averaging firing and misfiring cycles. The occurrence pattern of misfiring should be quantified and considered in the analysis.
Technical Paper

Cyclic Variation of CO and CO2 Emissions and Scavenging Flow in a Two-Stroke Engine

1994-03-01
940392
The purpose of this study is to experimentally understand the cyclic variation of combustion state in a two-stroke engine with respect to the variations in scavenging flow and the CO and CO2 emissions. The criteria of grouping combustion states into misfiring were established using the in-cylinder pressure at the crankangle of maximum variability in peak pressure instead of indicated mean effective pressure. The CO and CO2 emissions and the flow velocity variations in the transfer port and the exhaust pipe were measured. Combustion of each cycle was grouped into misfiring, incomplete firing or firing by the criteria of the in-cylinder pressure. In the cycle before misfiring, the CO and CO2 concentration showed high level and the first peak of the exhaust flow showed large velocity and the positive velocity remained for long duration, and the exhaust and the transfer port flow were steeply decelerated to negative velocity midway between scavenge port opening and bottom dead center.
X