Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Durable Copper and Iron SCR Catalysts for Mobile Diesel and Dual-Fuel Applications

2016-10-17
2016-01-2214
The latest emission regulations for mobile and stationary applications require the use of aftertreatment methods for NOx and diesel particulate filters (DPF) for particulate matter (PM). SCR catalysts were evaluated by laboratory experiments and the most promising SCR catalysts were also scaled up to full-size. Development with copper (Cu) and iron (Fe) on zeolitic materials (Beta, ZSM-5, SAPO, chabazite) has resulted in the new generation of thermally durable SCR (selective catalytic reduction) catalysts, which have also an improved sulfur tolerance and a low N2O formation tendency. Opposite to Cu on Beta and ZSM-5, Cu on chabazite and SAPO showed clearly lower N2O formation. Cu-SCR catalysts had a low dependency on NO2/NOx but Fe-SCR catalysts required a higher NO2/NOx ratio (>0.3) to keep a high NOx efficiency.
Technical Paper

Design and Durability of Vanadium-SCR Catalyst Systems in Mobile Off-Road Applications

2011-04-12
2011-01-1316
The emission regulations for mobile off-road applications are following on-road trends by a short delay. The latest Stage 3B and 4 emission limits mean a gradual implementation of oxidation and SCR catalysts as well as particulate filters with off-road machines/vehicles in the 2010s. The driving conditions and test cycles differ from on-road truck applications which have been the first design base for off-road aftertreatment technologies. Aftertreatment systems for Stage 4 were first analyzed and they will include oxidation catalysts, a NOx reduction catalyst (SCR or LNT), a particulate filter and possibly units for urea hydrolysis and ammonia slip removal. The design and durability of V₂O₅/TiO₂-WO₃ catalysts based on metallic substrates were investigated by engine bench and field experiments. NOx emissions were measured with 6.6 and 8.4 liters engines designed for agricultural and industrial machinery.
Technical Paper

Design of Durable Vanadium - SCR Catalyst Systems for Heavy - Duty Diesel Applications

2013-01-09
2013-26-0049
The emission regulations for mobile applications become stricter in Euro-IV to Euro-VI levels. Carbon monoxide and hydrocarbon can be removed by efficient Diesel Oxidation Catalysts (DOC) but Particulate Matter (PM) and NOx are more demanding requiring the use of active methods (urea-SCR and DPF) which will be world-wide implemented in the 2010's. Durable, coated V-SCR catalysts are based on stabilized raw materials and tailored preparation methods. Coated V2O5/TiO2-WO3 catalysts (ceramic 300/400 cpsi and metallic 500/600 cpsi) were evaluated by laboratory and engine bench experiments. Traditional V-SCR catalysts are durable up to about 600°C and have a high efficiency at 300°C-500°C. SCR activities were tailored to be higher also at 200°C-300°C or 500°C-600°C. The use of thermal stabilizers or the vanadium loading variation enabled the changes in operation window and stability.
Technical Paper

Thermally Durable Vanadium-SCR Catalysts for Diesel Applications

2013-04-08
2013-01-1063
The emission regulations for mobile applications will become stricter in Euro 4 - 6 levels and require the use of active aftertreatment methods (deNOx and DPF) in addition to passively operating diesel oxidation catalysts (DOC). Vanadium-SCR (V-Selective Catalytic Reduction) catalysts based on stabilized TiO₂-WO₃ raw materials and tailored preparation methods were first evaluated by the laboratory experiments. Conventional V-SCR catalysts were durable up to about 600°C but the developed catalyst stand hydrothermal ageing up to 700°C without losses of activity. Simultaneously, the performance at 250 - 450°C was about the same as with the traditional V-SCR catalyst and the SCR selectivity at 450 - 600°C was high with a low NH₃ oxidation tendency. Coated V₂O₅/TiO₂-WO₃ catalysts (ceramic and metallic substrates) were evaluated with a 4.9 L engine by engine bench experiments.
X