Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Vehicle Automation Emergency Scenario: Using a Driving Simulator to Assess the Impact of Hand and Foot Placement on Reaction Time

2021-04-06
2021-01-0861
As vehicles with SAE level 2 of autonomy become more widely deployed, they still rely on the human driver to monitor the driving task and take control during emergencies. It is therefore necessary to examine the Human Factors affecting a driver’s ability to recognize and execute a steering or pedal action in response to a dangerous situation when the autonomous system abruptly requests human intervention. This research used a driving simulator to introduce the concept of level 2 autonomy to a cohort of 60 drivers (male: 48%, female: 52%) of different age groups (teens 16 to 19: 32%, adults: 35 to 54: 37%, seniors 65+: 32%). Participants were surveyed for their perspectives on self-driving vehicles. They were then assessed on a driving simulator that mimicked SAE level 2 of autonomy. Participants’ interaction with the HMI was studied.
Technical Paper

Experience and Skill Predict Failure to Brake Errors: Further Validation of the Simulated Driving Assessment

2014-04-01
2014-01-0445
Driving simulators offer a safe alternative to on-road driving for the evaluation of performance. In addition, simulated drives allow for controlled manipulations of traffic situations producing a more consistent and objective assessment experience and outcome measure of crash risk. Yet, few simulator protocols have been validated for their ability to assess driving performance under conditions that result in actual collisions. This paper presents results from a new Simulated Driving Assessment (SDA), a 35- to-40-minute simulated assessment delivered on a Real-Time® simulator. The SDA was developed to represent typical scenarios in which teens crash, based on analyses from the National Motor Vehicle Crash Causation Survey (NMVCCS). A new metric, failure to brake, was calculated for the 7 potential rear-end scenarios included in the SDA and examined according two constructs: experience and skill.
Technical Paper

Biofidelic Evaluation of the Large Omni-Directional Child Anthropomorphic Test Device in Low Speed Loading Conditions

2020-03-31
2019-22-0009
Motor vehicle crashes remain the leading cause of death for children. Traditionally, restraint design has focused on the crash phase of the impact with an optimally seated occupant. In order to optimize restrain design for real-world scenarios, research has recently expanded its focus to non-traditional loading conditions including pre-crash positioning and lower speed impacts. The goal of this study was to evaluate the biofidelity of the large omni-directional child (LODC) ATD in non-traditional loading conditions by comparing its response to pediatric volunteer data in low-speed sled tests. Low-speed (2-4 g, 1.9-3.0 m/s) frontal (0°), far-side oblique (60°), and far-side lateral (90°) sled tests, as well as lateral swerving (0.72 g, 0.5 Hz) tests, were conducted using the LODC. The LODC was restrained using a 3-point-belt with an electromechanical motorized seat belt retractor, or pre-pretensioner. Motion capture markers were placed on the head, torso, and belt.
Technical Paper

The Effect of An Acoustic Startling Warning On Take-Over Reaction Time And Trunk Kinematics for Drivers in Autonomous Driving Scenarios

2020-03-31
2019-22-0022
The Acoustic Startling Pre-stimulus (ASPS, i.e. a loud sound preceding a physical perturbation) was previously found to accelerate action execution in simple flexion exercises. Therefore in this study we examined if ASPS can accelerate take-over reaction times in restrained teen and adult drivers who were asked to reach for the steering wheel while experiencing sled lateral perturbations simulating a vehicle swerve. Results showed that adult drivers lift their hands toward the steering wheel faster with the ASPS versus without (161 ± 23 ms vs 216 ± 27 ms, p<0.003). However this effect was not found in teens or in trials where the drivers were engaged in a secondary task. Adults also showed reduced lateral trunk displacement out of the seat belt with the ASPS. The ASPS could represent a novel warning that reduces take over time and out-of-position movements in critical autonomous driving scenarios.
Technical Paper

Comparison of Kinematic Responses of the Head and Spine for Children and Adults in Low-Speed Frontal Sled Tests

2009-11-02
2009-22-0012
Previous research has suggested that the pediatric ATD spine, developed from scaling the adult ATD spine, may not adequately represent a child's spine and thus may lead to important differences in the ATD head trajectory relative to a human. To gain further insight into this issue, the objectives of this study were, through non-injurious frontal sled tests on human volunteers, to 1) quantify the kinematic responses of the restrained child's head and spine and 2) compare pediatric kinematic responses to those of the adult. Low-speed frontal sled tests were conducted using male human volunteers (20 subjects: 6-14 years old, 10 subjects: 18-40 years old), in which the safety envelope was defined from an amusement park bumper-car impact.
X