Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

The Effects of Fuel Properties on Emissions from a 2.5gm NOx Heavy-Duty Diesel Engine

1998-10-19
982491
The engine selected for this work was a Caterpillar 3176 engine. Engine exhaust emissions, performance, and heat release rates were measured as functions of engine configuration, engine speed and load. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to achieve a NOx emissions level of 2.5 gm/hp-hr. Measurements were performed at 7 different steady-state, speed-load conditions on thirteen different test fuels. The fuel matrix was statistically designed to independently examine the effects of the targeted fuel properties. Cetane number was varied from 40 to 55, using both natural cetane number and cetane percent improver additives. Aromatic content ranged from 10 to 30 percent in two different forms, one in which the aromatics were predominantly mono-aromatic species and the other, where a significant fraction of the aromatics were either di- or tri-aromatics.
Technical Paper

HCCI Operation of a Dual-Fuel Natural Gas Engine for Improved Fuel Efficiency and Ultra-Low NOx Emissions at Low to Moderate Engine Loads

2001-05-07
2001-01-1897
A new combustion concept has been developed and tested for improving the low to moderate load efficiency and NOx emissions of natural gas engines. This concept involves operation of a dual-fuel natural gas engine on Homogeneous Charge Compression Ignition (HCCI) in the load regime of idle up to 35 % of the peak torque. A dual-fuel approach is used to control the combustion phasing of the engine during HCCI operation, and conventional spark-ignited natural gas combustion is used for the high-load regime. This concept has resulted in an engine with power output and high-load fuel efficiency that are unchanged from the base engine, but with a 10 - 15 % improvement to the low to moderate load fuel efficiency. In addition, the engine-out NOx emissions during HCCI operation are over 90% lower than on spark-ignited natural gas operation over the equivalent load range.
Technical Paper

Effects of PuriNOx™ Water-Diesel Fuel Emulsions on Emissions and Fuel Economy in a Heavy-Duty Diesel Engine

2002-10-21
2002-01-2891
The engine-out emissions and fuel consumption rates for a modern, heavy-duty diesel engine were compared when fueling with a conventional diesel fuel and three water-blend-fuel emulsions. Four different fuels were studied: (1) a conventional diesel fuel, (2) PuriNOx,™ a water-fuel emulsion using the same conventional diesel fuel, but having 20% water by mass, and (3,4) two other formulations of the PuriNOx™ fuel that contained proprietary chemical additives intended to improve combustion efficiency and emissions characteristics. The emissions data were acquired with three different injection-timing strategies using the AVL 8-Mode steady-state test method in a Caterpillar 3176 engine, which had a calibration that met the 1998 nitrogen oxides (NOX) emissions standard.
Technical Paper

Effects of Water-Fuel Emulsions on Spray and Combustion Processes in a Heavy-Duty DI Diesel Engine

2002-10-21
2002-01-2892
Significant reductions of particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines have been realized through fueling with water-fuel emulsions. However, the physical and chemical in-cylinder mechanisms that affect these pollutant reductions are not well understood. To address this issue, laser-based and chemiluminescence imaging experiments were performed in an optically-accessible, heavy-duty diesel engine using both a standard diesel fuel (D2) and an emulsion of 20% water, by mass (W20). A laser-based Mie-scatter diagnostic was used to measure the liquid-phase fuel penetration and showed 40-70% greater maximum liquid lengths with W20 at the operating conditions tested. At some conditions with low charge temperature or density, the liquid phase fuel may impinge directly on in-cylinder surfaces, leading to increased PM, HC, and CO emissions because of poor mixing.
Technical Paper

Performance Predictions for High Efficiency Stoichiometric Spark Ignited Engines

2005-04-11
2005-01-0995
Southwest Research Institute (SwRI) is exploring the feasibility of extending the performance and fuel efficiency of the spark ignition (SI) engine to match that of the emission constrained compression (CI) engine, whilst retaining the cost effective 3-way stoichiometric aftertreatment systems associated with traditional SI light duty engines. The engine concept, which has a relatively high compression ratio and uses heavy EGR, is called “HEDGE”, i.e. High Efficiency Durable Gasoline Engine. Whereas previous SwRI papers have been medium and heavy duty development focused, this paper uses results from simulations, with some test bed correlations, to predict multicylinder torque curves, brake thermal efficiency and NOx emissions as well as knock limit for light and medium duty applications.
Technical Paper

Control of Diesel Exhaust Emissions in Underground Coal Mines - Steady-State and Transient Engine Tests with a Five Percent Water-in-Fuel Microemulsion

1983-02-01
830555
This paper is the fourth in a series describing work sponsored by the Bureau of Mines to reduce diesel particulate and gaseous emissions through fuel modification. A stabilized water microemulsion fuel developed in previous work was tested in a Caterpillar 3304 NA four-cylinder engine with compression ratio and injection timing and rate optimized for this fuel to demonstrate the emissions reductions achieved. It was tested in both standard and optimum configurations with both baseline DF-2 and optimized microemulsion fuels. Gaseous and particulate data are presented from steady-state tests using a computer-operated mini-dilution tunnel and from transient tests using a total exhaust dilution tunnel. The optimized engine-fuel combination was effective in reducing particulates and oxides of nitrogen in steady-state tests. However, the standard engine-fuel combination provided the lowest particulate and NOx emissions in transient tests.
Technical Paper

The Effects of Engine and Fuel Parameters on Diesel Exhaust Emissions during Discrete Transients in Speed and Load

1985-02-01
850110
Diesel exhaust emission levels have been measured during discrete transients in speed and load, and with changes made to the engine and fuel. Particulate, oxides of nitrogen, unburned hydrocarbon, and carbon monoxide measurements were made for two fuels, DF2 and 5 percent water-in-fuel microemulsion, for both a standard Caterpillar 3304 and a modified 3304 engine. Engine modifications included increasing compression ratio and retarding injection timing. This paper examines the effects of the water addition and engine modification on the steady-state and transient emission levels. In general, the addition of water decreased the particulate and oxides of nitrogen emission levels for the standard engine, but increased the levels of hydrocarbons and carbon monoxide. For the modified engine, the water addition resulted in a slight decrease in oxides of nitrogen and particulate matter at high speed and load conditions.
Technical Paper

The Effects of Discrete Transients in Speed and Load on Diesel Engine Exhaust Emissions

1985-02-01
850109
The responses of diesel engine exhaust emissions to transients in speed and torque are examined. Particulate matter, hydrocarbons, carbon monoxide, and oxides of nitrogen were sampled for discrete segments of various transient cycles. Each cycle consisted of four distinct segments, two of which were steady state, in general, each segment was defined by choosing the beginning and ending values for speed and torque, and the segment length. Using regression techniques, prediction equations were obtained for each emission. The equations relate the emission levels to engine parameters, which describe each segment. Speed and torque were found to be important variables as were the rates at which speed and torque changed. Transients in torque were found to increase particulate and carbon monoxide emissions.
Technical Paper

Comparison of Predicted and Measured Diesel Exhaust Emission Levels During Transient Operation

1987-11-01
872140
A technique is verified for mapping the exhaust emission levels of a diesel engine during transient operation. Particulate matter, oxides of nitrogen, hydrocarbons, and carbon monoxide emissions were sampled for discrete segments of various transient cycles. Each cycle consisted of four distinct segments. The discrete segments are described by average engine conditions, rate of change variables, and segment length. Regression analysis was used to develop equations relating the emission levels during each segment to the engine parameters. The regression equations were then used to obtain estimates of composite emission levels of several complex transient cycles that were subsequently tested. These cycles included the EPA heavy-duty transient cycle and two simulated heavy-duty cycles developed for underground mine vehicles. Comparison of the predicted and measured cycle emissions are made for the EPA heavy duty cycle and the simulated mine cycles.
X