Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Cetane Numbers of Fatty Esters, Fatty Alcohols and Triglycerides Determined in a Constant Volume Combustion Bomb

1990-02-01
900343
During the 1980's, vegetable oils, microemulsions containing fatty alcohols as surfactants, and fatty esters have been extensively investigaed as alternative fuels to #2 diesel fuel (DF-2) used in farm tractors. Despite the importance of vegetable oils (mainly triglycerides) and fatty derivatives to the alternative fuel program, cetane numbers for pure triglycerides and many fatty derivatives were not reported. In the current study, estimated cetane numbers of these materials have been determined by use of a constant volume combustion bomb. Prior research has shown that this equipment can produce cetane numbers that correlate satisfactorily with engine cetane numbers as determied by ASTM D 613. The influence of chemical structure on ignition delay and cetane number was investigated. Evidence is presented that shows the current cetane number scale is not always suitable for these fatty materials. Suggestions are made as to what might be done to remedy this problem.
Technical Paper

The Effects of Fuel Properties on Emissions from a 2.5gm NOx Heavy-Duty Diesel Engine

1998-10-19
982491
The engine selected for this work was a Caterpillar 3176 engine. Engine exhaust emissions, performance, and heat release rates were measured as functions of engine configuration, engine speed and load. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to achieve a NOx emissions level of 2.5 gm/hp-hr. Measurements were performed at 7 different steady-state, speed-load conditions on thirteen different test fuels. The fuel matrix was statistically designed to independently examine the effects of the targeted fuel properties. Cetane number was varied from 40 to 55, using both natural cetane number and cetane percent improver additives. Aromatic content ranged from 10 to 30 percent in two different forms, one in which the aromatics were predominantly mono-aromatic species and the other, where a significant fraction of the aromatics were either di- or tri-aromatics.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT™) - Part IV

2001-09-24
2001-01-3527
This paper reports on the fourth part of a continued study on further research and development with the automated Ignition Quality Tester (IQT™). Research over the past six years (reported in SAE papers #961182, 971636 and 1999-01-3591) has demonstrated the capabilities of this automated apparatus to measure the ignition quality and accurately determine a derived cetane number (DCN) for a wide range of middle distillate and non-conventional diesel fuels. The present paper reports on a number of separate investigations supporting these continued studies.
Technical Paper

Effects of Fuel Properties and Composition on the Temperature Dependent Autoignition of Diesel Fuel Fractions

1992-10-01
922229
The work described in this paper includes the preparation and combustion testing of fuels that consist of fractions of several different distillate materials that represent different feed stocks and different processing technology. Each of the fuels have been tested in a constant volume combustion apparatus to determine the relationship between ignition delay time, temperature and cetane number. These relationships are discussed in terms of the composition and properties of each fraction, and the processing that each of the feedstocks were exposed to.
Technical Paper

Relationships Between Fuel Properties and Composition and Diesel Engine Combustion Performance and Emissions

1994-03-01
941018
Five different diesel fuel feedstocks were processed to two levels of aromatic (0.05 sulfur, and then 10 percent) content. These materials were distilled into 6 to 8 narrow boiling range fractions that were each characterized in terms of the properties and composition. The fractions were also tested at five different speed load conditions in a single cylinder engine where high speed combustion data and emissions measurements were obtained. Linear regression analysis was used to develop relationships between the properties and composition, and the combustion and emissions characteristics as determined in the engine. The results are presented in the form of the regression equations and discussed in terms of the relative importance of the various properties in controlling the combustion and emissions characteristics. The results of these analysis confirm the importance of aromatic content on the cetane number, the smoke and the NOx emissions.
Technical Paper

Cetane Effect on Diesel Ignition Delay Times Measured in a Constant Volume Combustion Apparatus

1995-10-01
952352
The key feature of diesel fuel ignition quality is ignition delay time. In the American Society for Testing and Materials standard test for cetane number measurement, (ASTM D 613) the ignition delay time is held constant while the compression ratio is varied until ignition occurs at the set time. On the other hand, commercial diesel engines have set compression ratios and therefore, the ignition delay time varies with the cetane number of the fuel. The shorter this delay time, the wider the time window over which the combustion processes are spread. This leads to a more controlled heat release rate and pressure rise, resulting in prevention of diesel knock and in lowering of emissions. High cetane fuels exhibit short ignition delay times. The Constant Volume Combustion Apparatus (CVCA) precisely measures the ignition delay time of fuels. This study investigates the CVCA as a supplementary tool for characterization of diesel fuel ignition quality under a variety of conditions.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT)

1996-05-01
961182
A combustion-based analytical method, initially developed by the Southwest Research Institute (SwRI) referred to as the Constant Volume Combustion Apparatus (CVCA), has been further researched/developed by an SwRI licensee (Advanced Engine Technology Ltd.) as an Ignition Quality Tester (IQT) for laboratories and refineries. The IQT software/hardware system permits rapid and precise determination of ignition quality for middle distillate fuels. Its features, such as low fuel volume requirement, complete test automation, and self-diagnosis, make it highly suitable for commercial oil industry and research applications. Operating and test conditions were examined in the context of providing a high correlation with cetane number (CN), as determined by the ASTM D-613 method. Preliminary investigation indicates that the IQT results are highly repeatable (± 0.30 CN), providing a high sensitivity to CN variation over the 33 to 58 CN range.
Technical Paper

Cetane Numbers of Fatty Compounds:Influence of Compound Structure and of Various Potential Cetane Improvers

1997-05-01
971681
Biodiesel is a mixture of esters (usually methyl esters) of fatty acids found in the triglycerides of vegetable oils. The different fatty compounds comprising biodiesel possess different ignition properties. To investigate and potentially improve these properties, the cetane numbers of various fatty acids and esters were determined in a Constant Volume Combustion Apparatus. The cetane numbers range from 20.4 for linolenic acid to 80.1 for butyl stearate. The cetane numbers depend on the number of CH2 groups as well as the number of double bonds and other factors. Various oxygenated compounds were studied for their potential of improving the cetane numbers of fatty compounds. Several potential cetane improvers with ignition delay properties giving calculated cetane numbers over 100 were identified. The effect of these cetane improvers depended on their concentration and also on the fatty material investigated.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT) - Part II

1997-05-01
971636
A combustion-based analytical method, initially developed by the Southwest Research Institute (SwRI) and referred to as the Constant Volume Combustion Apparatus (CVCA), has been further researched/developed by an SwRI licensee (Advanced Engine Technology Ltd.). This R&D has resulted in a diesel fuel Ignition Quality Tester (IQT) that permits rapid and precise determination of the ignition quality of middle distillate and alternative fuels. Its features, such as low fuel volume requirement, complete test automation, and self-diagnosis, make it highly suitable for commercial oil industry and research applications. A preliminary investigation, reported in SAE paper 961182, has shown that the IQT results are highly correlated to the ASTM D-613 cetane number (CN). The objective of this paper is to report on efforts to further refine the original CN model and report on improvements to the IQT fuel injection system.
Technical Paper

The Heavy Duty Gasoline Engine - A Multi-Cylinder Study of a High Efficiency, Low Emission Technology

2005-04-11
2005-01-1135
SwRI has developed a new technology concept involving the use of high EGR rates coupled with a high-energy ignition system in a gasoline engine to improve fuel economy and emissions. Based on a single-cylinder study [1], this study extends the concept of a high compression ratio gasoline engine with EGR rates > 30% and a high-energy ignition system to a multi-cylinder engine. A 2000 MY Isuzu Duramax 6.6 L 8-cylinder engine was converted to run on gasoline with a diesel pilot ignition system. The engine was run at two compression ratios, 17.5:1 and 12.5:1 and with two different EGR systems - a low-pressure loop and a high pressure loop. A high cetane number (CN) diesel fuel (CN=76) was used as the ignition source and two different octane number (ON) gasolines were investigated - a pump grade 91 ON ((R+M)/2) and a 103 ON ((R+M)/2) racing fuel.
Technical Paper

Fuel Effects on Combustion in a Two-Stroke Diesel Engine

1985-10-01
852104
Combustion studies on various potential alternative fuels were performed for the U.S. Array Belvoir Research and Development Center in a two-stroke heavy duty diesel engine. One cylinder of the engine was instrumented with a pressure transducer. A high-speed data acquisition system was used to acquire cylinder pressure histories synchronously with crankangle. The heat release diagrams, along with the calculated combustion efficiencies of the fuels were compared to a referee grade diesel fuel. The calculated and measured combustion parameters include heat release centroids, cumulative heat release, peak pressure, indicated horsepower, peak rate of pressure rise, indicated thermal efficiency, energy input, and ignition delay. Regression analyses were performed between various fuel properties and the calculated and measured combustion performance parameters. The fuel properties included specific gravity, cetane number, viscosity, boiling point distribution.
Technical Paper

Correlation of Physical and Chemical Ignition Delay to Cetane Number

1985-10-01
852103
As a part of an overall project to improve the techniques for rating the ignition quality of diesel engine fuels, the experiments described in this paper involve examination of the relationship between cetane number and both the physical and chemical ignition delay times. The ignition delay times have been determined from accurate pressure histories obtained during the injection and ignition of a variety of test fuels in a constant volume combustion bomb using a quiescent, high-temperature, high-pressure air environment. The test fuels have included blends of the primary reference fuels as well as other fuels selected because of specific physical properties or chemical composition. The correlation between the cetane numbers of the fuels and various ignition delay times are examined.
Technical Paper

Engine and Constant Volume Bomb Studies of Diesel ignition and Combustion

1988-10-01
881626
Changing fuel quality, increasingly stringent exhaust emission standards, demands for higher efficiency, and the trend towards higher specific output, all contribute to the need for a better understanding of the ignition process in diesel engines. In addition to the impact on the combustion process and the resulting performance and emissions, the ignition process controls the startability of the engine, which, in turn, governs the required compressions ratio and several of the other engine design parameters. The importance of the ignition process is reflected in the fact that the only combustion property that is specified for diesel fuel is the ignition delay time as indicated by the cetane number. The objective of the work described in this paper was to determine the relationship between the ignition process as it occurs in an actual engine, to ignition in a constant volume combustion bomb.
Technical Paper

Ignition Delay as Determined in a Variable-Compression Ratio Direct-Injection Diesel Engine

1987-11-01
872036
A variable-compression ratio, direct-injection diesel engine (VCR) has been designed and assembled at Southwest Research Institute with the intention of examining the current procedures for rating the ignition quality of diesel fuels and the meaning of ignition delay as an indicator of ignition and combustion quality. Using a slightly modified ASTM D 613 procedure, the engine has been used to rate the ignition quality of 43 different test fuels. The ratings obtained in the VCR engine are compared to the corresponding rating obtained using the standard cetane rating procedure. Some of the problems associated with the standard procedure became apparent during these experiments. The experimental results are discussed in terms of the problems and the advantages of a proposed VCR-based rating procedure.
Technical Paper

Diesel Fuel Ignition Quality as Determined in a Constant Volume Combustion Bomb

1987-02-01
870586
The ignition delay times of forty-two different fuels were measured in a constant volume combustion bomb. The measurements were performed at three different initial air temperatures using fuels ranging from the primary reference fuels for cetane rating to complex mixtures of coal-derived liquids. The ignition delay times were examined in terms of the classical definitions of the physical and chemical delay times. The previously used definitions were found to be inadequate, and new definitions have been proposed. The total ignition delay times were studied in the context of providing a means for rating the ignition quality of the fuels. Fuel ignition quality rating schemes are discussed, including one based on the current cetane number scale as well as one based on a new scale which includes a measure of the sensitivity of the various fuels to the air temperature.
Technical Paper

Diesel Fuel Ignition Quality as Determined in a Variable Compression Ratio, Direct-Injection Engine

1987-02-01
870585
A single-cylinder, variable-compression ratio, direct-injection diesel engine was designed and constructed to study the ignition quality of seventeen different test fuels, ranging from the primary reference fuels to a vegetable oil. The objective of the work was to compare the ignition quality rating of the fuels using the standard cetane rating technique to ratings obtained in the test engine. The ignition delay times have been measured as functions of the engine speed, load, and compression ratio. As in the standard cetane rating technique, injection timing was adjusted so that combustion started at top dead center. This was accomplished by adjusting the injection timing as the speed, load, and compression ratio were varied. The resulting data is plotted as the ignition delay times versus compression ratio at the various speed-load conditions.
Technical Paper

EPA HDEWG Program - Statistical Analysis

2000-06-19
2000-01-1859
The U.S. Environmental Protection Agency (EPA) formed a Heavy-Duty Engine Working Group (HDEWG) in the Mobile Sources Technical Advisory Subcommittee in 1995. The goal of the HDEWG was to help define the role of the fuel in meeting the future emissions standards in advanced technology engines (beyond 2004 regulated emissions levels). A three-phase program was developed. This paper presents the results of the statistical analysis of the data collected in the Phase II program. Included is a description of the design of the fuel test matrix, and a listing of the regression equations developed to predict emissions as a function of fuel density, cetane number, monoaromatics, and polyaromatics. Also included is a description of selected analyses of the emissions from a smaller set of fuel data that allowed direct comparison of the effects of natural and boosted cetane number.
Technical Paper

EPA HDEWG Program - Test Fuel Development

2000-06-19
2000-01-1857
In 1995, US Environmental Protection Agency (EPA) formed the Heavy-Duty Engine Working Group (HDEWG). The objective of the group was to assess the role diesel fuel could play in meeting exhaust emission standards proposed for model year 2004+ heavy-duty diesel engines. The group developed a three-phase program to achieve this objective. This paper describes the development of test fuels used in Phase 2 of the EPA HDEWG Program to investigate the effect of fuel properties on heavy-duty diesel engine emissions. It discusses the design of the fuel matrix, reviews the process of test fuel preparation and presents the results of a multi-laboratory fuel analysis program. Fuel properties selected for investigation included density, cetane number, mono- and polyaromatic hydrocarbon content.
Technical Paper

EPA HDEWG Program-Engine Tests Results

2000-06-19
2000-01-1858
In 1997 the US EPA formed a Heavy-Duty Engine Working Group (HDEWG) in the Mobile Sources Technical Advisory Subcommittee to address the questions related to fuel property effects on heavy-duty diesel engine emissions. The Working Group consisted of members from EPA and the oil refining and engine manufacturing industries. The goal of the Working Group was to help define the role of the fuel in meeting the future emissions standards in advanced technology engines (beyond 2004 regulated emissions levels). To meet this objective a three-phase program was developed. Phase I was designed to demonstrate that a prototype engine, located at Southwest Research Institute, represented similar emissions characteristics to that of certain manufacturers prototype engines. Phase II was designed to document the effects of selected fuel properties using a statistically designed fuel matrix in which cetane number, density, and aromatic content and type were the independent variables.
Technical Paper

Analysis of the Ignition Behaviour of the ASTM D-613 Primary Reference Fuels and Full Boiling Range Diesel Fuels in the Ignition Quality Tester (IQT™) - Part III

1999-10-25
1999-01-3591
This paper reports on the third part of a continued study (SAE Papers 961182, 971636) to develop the Ignition Quality Tester (IQT™). Past research has shown that this automated laboratory/refinery apparatus can be used to accurately predict the cetane number of middle distillates and alternative fuels using small sample volumes (< 50 mL). The paper reports on the main objective of a study performed by Advanced Engine Technology Ltd. (AET), in co-operation with its research partners. The primary research objective of this work is to further the understanding of fuel preparation (fuel air mixing) and start of combustion processes in the IQT™. Key to this understanding is the manner in which single molecule compounds and full boiling-range diesel fuels behave during these processes. Insights are provided into the manner in which the American Society for Testing and Materials (ASTM) D-613 primary reference fuels (PRFs) undergo fuel preparation and start of combustion in the IQT™.
X