Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Fast Response NO/HC Measurements in the Cylinder and Exhaust Port of a DI Diesel Engine

1998-02-01
980788
A novel Fast Response Chemiluminescence Detector and a Fast Flame Ionization detector have been used to examine the instantaneous NO and unburnt hydrocarbon concentration in the cylinder and exhaust port of a DI Diesel engine. The in-cylinder results indicate very high levels of NO in the premixed phase of combustion, followed by generally lower levels during the diffusion burning phase. Hydrocarbon signals also indicate significant detail. The in-cylinder uHC signal is consistent with the probe location being between two of the fuel sprays. Both in-cylinder and exhaust results indicate rather high cyclic variability in the NO levels at steady conditions. Variations in the timing and structure of the exhaust uHC signal during the valve open period with load may give insight into the fuel spray/air motion.
Technical Paper

A New Instrument for Diesel Particulate Filter Functional Tests in Development and Quality Control Applications

2010-04-12
2010-01-0809
A new Diesel Particulate Generator (DPG) has been developed and commercialized for the automated testing of full-size, light duty Diesel Particulate Filters (DPFs). The system was optimized for filter development testing with a wide parameter range of relevant functional tests, and quality assurance testing where repeatability and rapid testing is important. A carefully designed Diesel-fuelled burner is combined with blowers to produce flows, temperatures and particulate matter (PM) that are representative of Diesel engines. The burner operates with continuous combustion of a Diesel fuel spray, with three-stage introduction of controlled airflows. Variation of these flows allows control of particulate generation independently of total gas flow and temperature (over a temperature and flow range). The system can generate stable PM at more than 20 g/h, or operate without PM formation so permitting preheating of a test filter.
Technical Paper

Real-time Particle Emissions from 2-stroke Motorbikes with and without PMP Sampling System

2010-09-28
2010-32-0047
This paper describes various aspects of the particle emissions from a 2-stroke motorbike. It gives an indication of issues which may face emissions engineers if (or when) such vehicles become subject to particulate legislation similar to that for light duty vehicles. A DMS500 fast particulate spectrometer was used to examine transient particle emissions from the CVS tunnel for two 2-stroke motorbikes over the European ECE R47 and urban New European Drive Cycle (NEDC) drive cycles. One was direct injected and the other was carburretted. Transient size spectra and number data from the output of a two stage, Particulate Measurement Program (PMP) compliant heated dilution system are presented for the carburretted 2-stroke motorbike running the urban phase of the NEDC. Estimates of the particle number emissions relative to the Euro 5b light-duty diesel vehicle legislation are presented.
Technical Paper

Transient SI Engine Emissions Measurements on the FTP75 Drive Cycle with a Fast Response CO Instrument

2001-09-24
2001-01-3540
This paper describes the application of a non-dispersive infrared-based instrument designed to measure CO with a response time of 7ms. Spark ignition engine emission measurements recorded during the first 505 seconds of an FTP75 drive-cycle for a 4 cylinder engine are presented, including fast response hydrocarbon and NO measurements. An analysis of the engine-out (pre-catalyst) exhaust gas is provided. Data collected simultaneously with a standard emissions test stand and conventional dilution tunnel are compared to the high frequency measurements. Fast CO analysis provides new insight into cold-start fuelling calibration and cylinder-to-cylinder AFR variation. Under rich conditions, the strong dependence of CO production on the quantity of excess fuel allows a significantly faster estimate of engine stoichiometry than a UEGO sensor.
Technical Paper

A Fast Response Particulate Spectrometer for Combustion Aerosols

2002-10-21
2002-01-2714
Particulate emissions from IC engines associated with transient engine conditions are very important (similar to the legislated gaseous emissions). This is true both during real-world and test cycle driving. This paper describes an instrument for measuring the number of particles, and their spectral weighting, in the 5nm to 1000nm size range, with a time response of 200ms. This is achieved via an electrostatic classification technique, consisting of a diffusion charger followed by a multi-element, constant voltage, classifier. Conversion of the data to other metrics, such as mass, is also described. Results are presented from artificial test aerosols and from light and heavy duty diesel engines on standard test cycles.
Technical Paper

Investigation into the Performance of an Ultra-fast Response NO Analyser Equipped with a NO2 to NO Converter for Gasoline and Diesel Exhaust NOx Measurements

2000-10-16
2000-01-2954
The development and optimisation of an ultra-fast response chemiluminescence NOx analyser, equipped with a high temperature stainless steel, nitrogen dioxide (NO2) to nitric oxide (NO) converter, for the transient measurement of the NOx (NO + NO2) content of automotive emissions is described. Conventional analysers routinely used to measure NOx in automotive exhaust utilise chemiluminescence detection (CLD). Ultra-fast time-scale analysis using CLD, however, has traditionally been hindered by the slow conversion of NO2 to NO. The converter and technology used in the instrument described herein enables a 10-90% response time of less than 10 ms. Following optimisation in the laboratory, the fast response CLD NOx analyser was evaluated for raw exhaust sampling of port fuel injected (PFI) gasoline and diesel vehicles.
Technical Paper

Fast Response CO2 Sensor for Automotive Exhaust Gas Analysis

1999-10-25
1999-01-3477
A fast response sensor for measuring carbon dioxide concentration has been developed for laboratory research and tested on a spark ignition engine. The sensor uses the well known infra-red absorption technique with a miniaturized detection system and short capillary sampling tubes, giving a time constant of approximately 5 milliseconds; this is sufficiently fast to observe changes in CO2 levels on a cycle-by-cycle basis under normal operating conditions. The sensor is easily located in the exhaust system and operates continuously. The sensor was tested on a standard production four cylinder spark-ignition engine to observe changes in CO2 concentration in exhaust gas under steady state and transient operating conditions. The processed sensor signal was compared to a standard air-to-fuel ratio (AFR) sensor in the exhaust stream and the results are presented here. The high frequency response CO2 measurements give new insights into both engine and catalyst transient operation.
X