Refine Your Search

Search Results

Viewing 1 to 4 of 4
Standard

Truck and Bus Aerodynamic Device and Concept Terminology

2019-08-02
CURRENT
J2971_201908
This SAE J2971 Recommended Practice describes a standard naming convention of aerodynamic devices and technologies used to control aerodynamic forces on truck and buses weighing more than 10000 pounds (including trailers).
Standard

Truck and Bus Aerodynamic Device and Concept Terminology

2013-04-09
HISTORICAL
J2971_201304
This SAE J2971 Recommended Practice Truck and Bus Aerodynamic Device Terminology document describes a standard naming convention of aerodynamic devices and technologies used to control aerodynamic forces on truck and buses weighing more than 10,000 pounds (including trailers).
Standard

JOINT RCCC/SAE FUEL CONSUMPTION TEST PROCEDURE (SHORT TERM-IN-SERVICE VEHICLE) TYPE I

1979-04-01
HISTORICAL
J1264_197904
This recommended practice provides minimum requirements for testing components or systems of the type which can be switched from one truck to another with relative ease; i.e., aerodynamic devices, clutch fans, radial tires, and the like. The test utilizes in-service fleet vehicles, operated over representative routes. The relative fuel effectiveness of the component or system under test is determined as a percentage improvement factor. This factor is calculated using the relative fuel usage of like vehicles operating with and without the specific component or system under evaluation. Accuracy capability employing this test technique is either ±1% or ±2%, depending upon the method of fuel measurement. (See paragraph 6.4.)
Standard

JOINT RCCC/SAE FUEL CONSUMPTION TEST PROCEDURE (SHORT TERM IN-SERVICE VEHICLE) TYPE 1

1986-10-01
HISTORICAL
J1264_198610
This recommended practice provides minimum requirements for testing components or systems of the type which can be switched from one truck to another with relative ease; i.e., aerodynamic devices, clutch fans, radial tires, and the like. The test utilizes in-service fleet vehicles, operated over representative routes. The relative fuel effectiveness of the component or system under test is determined as a percentage improvement factor. This factor is calculated using the relative fuel usage of like vehicles operating with and without the specific component or system under evaluation. Accuracy capability employing this test technique is either ±1% or ±2%, depending upon the method of fuel measured. (See paragraph 7.4.)
X