Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Friction and Film-Formation Properties of Oil-Soluble Inorganic Nanoparticles

2008-10-06
2008-01-2460
Many vehicle and engine test studies have shown that the fuel efficiency of automobiles can be improved by reducing friction between moving parts. Typically, organic friction modifiers such as glycerol monooleate (GMO) or metal containing friction modifiers such as molybdenum dithiocarbamate (MoDTC) have been added to engine oils to reduce boundary friction and improve fuel efficiency. These traditional friction modifiers act by forming either a self-assembled organic film (in the case of GMO) or a Mo-disulfide chemical film (in the case of MoDTC). More recently, the ability of inorganic tungsten disulfide (WS2) nanoparticles to reduce boundary friction has been described. Martin has proposed that WS2 nanoparticles are transported into a contact zone where they are compressed and peel open like an onion to form a film. In this study, oil-soluble inorganic nanoparticles containing cerium (Ce) and zinc (Zn) have been synthesized.
Technical Paper

Automatic Transmission and Driveline Fluids*

2007-10-29
2007-01-3988
This paper provides an overview of driveline fluids, in particular automatic transmission fluids (ATFs), and is intended to be a general reference for those working with such fluids. Included are an introduction to driveline fluids, highlighting what sets them apart from other lubricants, a history of ATF development, a description of key physical ATF properties and a comparison of ATF fluid specifications. Also included are descriptions of the chemical composition of such fluids and the commonly used basestocks. A section is included on how to evaluate used driveline oils, describing common test methods and some comments on interpreting the test results. Finally the future direction of driveline fluid development is discussed. A glossary of terms is included at the end.
Technical Paper

Wear Mechanism in Cummins M-11 High Soot Diesel Test Engines

1998-05-04
981372
The Cummins M-11 high soot diesel engine test is a key tool in evaluating lubricants for the new PC-7 (CH-4) performance category. M-11 rocker arms and crossheads from tests with a wide range of lubricant performance were studied by surface analytical techniques. Abrasive wear by primary soot particles is supported by the predominant appearance of parallel grooves on the worn parts with their widths matching closely the primary soot particle sizes. Soot abrasive action appears to be responsible for removing the protective antiwear film and, thus, abrades against metal parts as well. Subsequent to the removal of the antiwear film, carbide particles, graphite nodules, and other wear debris are abraded, either by soot particles or sliding metal-metal contact, from the crosshead and rocker arm metal surfaces. These particles further accelerate abrasive wear. In addition to abrasive wear, fatigue wear was evident on the engine parts.
Technical Paper

Characterization of TEOST Deposits and Comparison to Deposits Formed on Sequence IIIG Pistons

2009-11-02
2009-01-2663
In the next ILSAC passenger car motor oil specification the Sequence IIIG engine test, as well as two versions of the Thermo-Oxidation Engine Oil Simulation Test (TEOST) have been proposed as tests to determine the ability of crankcase oils to control engine deposits. The Sequence IIIG engine test and the TEOST MHT test are designed to assess the ability of lubricants to control piston deposits and the TEOST 33 test is designed to assess the ability of lubricants to control turbocharger deposits. We have previously characterized the chemical composition of Sequence IIIG piston deposits using thermogravimetric, infrared and SEM/EDS analyses. Sequence IIIG piston deposits contain a significant amount of carbonaceous material and the carbonaceous material is more prevalent on sections of the pistons that should encounter higher temperatures. Furthermore, the carbonaceous material appears to be a deposit formed by the Sequence IIIG fuel.
Technical Paper

Investigation of Pitting Mechanism in the FZG Pitting Test

2003-10-27
2003-01-3233
Extended gear fatigue pitting life is an essential performance requirement for today's gear oils in automotive driveline applications. One of the important industrial standard tests used to evaluate fully formulated oil's ability to extend gear pitting fatigue life is the FZG pitting test. To understand the fatigue pitting behavior in these gears we have conducted surface analyses on the FZG gears to determine fatigue modes. We have found that micro-pitting is the major fatigue mode and pitting/spalling is mostly initiated by micro-pitting in the FZG test. To help further understand how pitting and micro-pitting relate to gear oil properties and gear surface morphology, we have also carried out a statistical analysis correlating fatigue pitting life with four major physical parameters: boundary friction coefficient, oil film thickness, oil corrosiveness, and surface roughness of the gear tooth.
Technical Paper

Wear in Cummins M-11/EGR Test Engines

2002-05-06
2002-01-1672
The Cummins M-11/EGR diesel engine test is a key tool in evaluating lubricants for the new PC-9 performance category. Wear on liners, crossheads, rocker arms and top ring faces of M-11/EGR high soot test engines operated with two different test cycles was studied through analytical surface techniques. The first test cycle used in this study was an early prototype PC-9 cycle, and the second test cycle was the PC-9 test procedure. Abrasive wear was observed on liners, crossheads and top ring faces. In addition to abrasive wear, corrosive wear was also found on M-11/EGR liners. However, no corrosive wear was observed on crossheads, rocker arms or top ring faces. Soot provides the major contribution to abrasive wear, since the widths of the relatively uniform parallel grooves in the wear scars closely match the primary soot particle sizes. More importantly, soot produced by the M-11/EGR engine was found to be harder than the engine parts.
Technical Paper

Film Formation Properties of Polymers in the Presence of Abrasive Contaminants

2002-10-21
2002-01-2793
Emission requirements for all vehicles have become increasingly more stringent. Diesel engine design changes required to meet emissions requirements result in increased levels of soot in the lubricant. This increased level of soot causes increased wear when oils are not properly formulated. Recent studies have shown that the primary cause of wear in the crossheads of Cummins M-11 and M-11/EGR engines is the abrasive nature of primary soot particles. In addition, it has also been shown that oils, which form films that are thicker than the size of primary soot particles can prevent abrasive wear. Dispersants and dispersant-polymers are known to prevent wear in the presence of soot. The goal of this study is to better understand the role of dispersants and functionalized polymers on the prevention of wear by examining their ability to form films in the presence of abrasive contaminants.
Technical Paper

Fundamentals of Anti-shudder Durability: Part I - Clutch Plate Study

2003-05-19
2003-01-1983
In automatic transmission technology development the degradation of paper friction plates has often been considered a major failure mechanism by which transmissions lose their anti-shudder characteristics. One of the most common degradation processes for paper friction plates is known as glazing. In this study, we focus on the relationship between friction plate glazing and anti-shudder durability in the Japanese Automobile Standards Organization (JASO) low velocity friction apparatus (LVFA) rig test following the procedure M349-98. We also investigate the impact of used friction plates and used oil on torque capacity durability as measured by an SAE No. 2 machine following the JASO procedure M348-95. We find that friction plate glazing has no correlation with anti-shudder durability. A completely glazed plate can have long anti-shudder durability but a barely glazed plate can have short anti-shudder durability.
Technical Paper

Planetary Gear Fatigue Behavior in Automatic Transmission

2006-10-16
2006-01-3243
An automatic transmission planetary gear fatigue test is used to screen lubricant performance of various automatic transmission fluids. The key use of this test is to assess the ability of a lubricant to extend or limit planetary gear system fatigue life. We study the fatigue behavior in this test and find the major failure modes are tooth macropitting, and macropitting-related tooth fracture of the sun and planetary gears (short and long pinion gears). Micropitting appears to be responsible for these gear failure modes. Macropitting is also seen on the shafts and needle rollers of the bearings. Gear tooth fracture appears to have originated from the surface as a secondary failure mode following macropitting. Bearing macropitting is initiated by geometric stress concentration. Bending fatigue failure on the sun and planetary gears also occurs but it is not a micropitting-initiated failure mode.
Technical Paper

Characterization of Deposits Formed on Sequence IIIG Pistons

2005-10-24
2005-01-3820
In the latest passenger car motor oil specifications the Sequence IIIG engine test is used to determine the ability of lubricants to control piston deposits. We have analyzed the chemical composition of Sequence IIIG deposits in order to determine the source of the piston deposits and determine if the mechanism for deposit formation in the Sequence IIIG engine test is similar to previously published mechanisms for formation of high temperature engine deposits. These previous mechanisms show that combustion by-products react with lubricant in the piston ring zone. The mixture of combustion by-products and lubricant are oxidized to form deposit precursors which are further oxidized to form deposits. Since the Sequence IIIG engine test uses lead-free fuel it is important to reexamine the nature of piston deposits formed in gasoline engines and in particular in the Sequence IIIG engine test.
X