Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Friction and Film-Formation Properties of Oil-Soluble Inorganic Nanoparticles

2008-10-06
2008-01-2460
Many vehicle and engine test studies have shown that the fuel efficiency of automobiles can be improved by reducing friction between moving parts. Typically, organic friction modifiers such as glycerol monooleate (GMO) or metal containing friction modifiers such as molybdenum dithiocarbamate (MoDTC) have been added to engine oils to reduce boundary friction and improve fuel efficiency. These traditional friction modifiers act by forming either a self-assembled organic film (in the case of GMO) or a Mo-disulfide chemical film (in the case of MoDTC). More recently, the ability of inorganic tungsten disulfide (WS2) nanoparticles to reduce boundary friction has been described. Martin has proposed that WS2 nanoparticles are transported into a contact zone where they are compressed and peel open like an onion to form a film. In this study, oil-soluble inorganic nanoparticles containing cerium (Ce) and zinc (Zn) have been synthesized.
Technical Paper

Wear Mechanism in Cummins M-11 High Soot Diesel Test Engines

1998-05-04
981372
The Cummins M-11 high soot diesel engine test is a key tool in evaluating lubricants for the new PC-7 (CH-4) performance category. M-11 rocker arms and crossheads from tests with a wide range of lubricant performance were studied by surface analytical techniques. Abrasive wear by primary soot particles is supported by the predominant appearance of parallel grooves on the worn parts with their widths matching closely the primary soot particle sizes. Soot abrasive action appears to be responsible for removing the protective antiwear film and, thus, abrades against metal parts as well. Subsequent to the removal of the antiwear film, carbide particles, graphite nodules, and other wear debris are abraded, either by soot particles or sliding metal-metal contact, from the crosshead and rocker arm metal surfaces. These particles further accelerate abrasive wear. In addition to abrasive wear, fatigue wear was evident on the engine parts.
X