Criteria

Text:
Topic:
Author:
Display:

Results

Viewing 1 to 20 of 20
HISTORICAL
2002-08-22
Standard
USCAR5-1
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel. It also defines the relief procedures required to minimize the risk of hydrogen embrittlement. SAE/USCAR-5 is intended to control the process.
HISTORICAL
1997-11-01
Standard
USCAR5
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and defines the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process. Hydrogen embrittlement of steel, which can cause brittle fractures under stress, occurs as a result of the absorption of hydrogen during cleaning, phosphate coating and plating processes. The susceptibility to hydrogen embrittlement increases with increasing stress (internal or externally applied stress) and increasing material strength. Hardness readings in this specification are in Vickers scale. SAE J417 should be referred to for conversion to other scales.
HISTORICAL
2007-03-01
Standard
USCAR5-2
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and define the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process. 1.1 Hydrogen embrittlement of steel, which can cause brittle fractures under stress, occurs as a result of the absorption of hydrogen during cleaning, phosphate coating and plating processes. The susceptibility to hydrogen embrittlement increases with increasing stress (internal or externally applied stress) and increasing material strength. 1.2 Hardness readings in this specification are in Vickers scale. SAE J417 should be referred to for conversion to other scales. NOTE 1: All references to temperatures relate to part core temperature and not the indicated oven air temperature. Statistical data of verifications in temperature at the center of the oven load and oven temperature shall be established to develop the oven profile.
CURRENT
2017-05-10
Standard
USCAR44
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of "branches" that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises a) from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray and different thicknesses of the holes that the clip is inserted into.
HISTORICAL
1998-12-30
Standard
USCAR7
This standard outlines test methods and practices which can detect embrittlement of steel parts. It is a process control or referee verification test. The risk of embrittlement of steel is minimized by using best practices in the finishing/coating process. One such practice is described in SAE/USCAR-5, Avoidance of Hydrogen Embrittlement of Steel.
CURRENT
2012-07-30
Standard
USCAR5-4
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and define the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process.
HISTORICAL
2008-07-01
Standard
USCAR5-3
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and define the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process. Hydrogen embrittlement of steel, which can cause brittle fractures under stress, occurs as a result of the absorption of hydrogen during cleaning, phosphate coating and plating processes. The susceptibility to hydrogen embrittlement increases with increasing stress (internal or externally applied stress) and increasing material strength. Hardness readings in this specification are in Vickers scale. SAE J417 should be referred to for conversion to other scales.
CURRENT
2012-07-30
Standard
USCAR7-1
This standard outlines test methods and practices which can detect embrittlement of steel parts. It is a process control or referee verification test. The risk of embrittlement of steel is minimized by using best practices in the finishing/coating process. One such practice is described in SAE/USCAR-5, Avoidance of Hydrogen Embrittlement of Steel.
CURRENT
1998-12-30
Standard
USCAR9
The materials defined by this U.S. CAR / S.A.E Recommended Practice are low VOC water based coatings for automotive tooling and general maintenance.
CURRENT
2007-10-08
Standard
USCAR35
A bolt-load retention (BLR) test is a practical test to determine the bolt load of a fastener joint with time and at given temperatures. There are three types of BLR tests described in this standard, namely general-purpose test, design-purpose test, and screening material test. A general-purpose BLR test may be used for screening materials, while a design-purpose BLR test is usually used to verify the BLR behavior of a specific joint. The screening material test is an example of the general-purpose test for typical automotive applications.
CURRENT
2007-03-13
Standard
USCAR32
This standard lists variables that shall be investigated and reported as an initial investigation into new or revised surface finishes intended for use on fasteners. This standard provides instruction for producing a final report that will be used to determine if further investigation of a surface finish is justified. Further investigation may include tests and evaluations specific to an individual OEM prior to introduction/approval of the surface finish. The final report shall include the results, observations, and conclusions for all of the variables. The final report may be made up of several individual reports covering each variable. In all cases the laboratory performing the test, the test date and the report approver shall be included in the final report.
HISTORICAL
2011-04-01
Standard
USCAR40
This guideline is applicable to existing lead solder production products that will change to lead-free solder processes to meet the ELV Directive 2000/53/EC Annex II, exemption 8B requirements. This guideline is applicable to similar products used by multiple OEM's that have the same manufacturing processes / equipment. The intent is to streamline the supplier’s environmental testing via common qualification to reduce timing, quantities, and costs.
CURRENT
2012-07-30
Standard
USCAR1-2
This procedure is used to test and evaluate the resistance of fastener surface finishes to laboratory salt spray testing.
HISTORICAL
1998-12-30
Standard
USCAR10
This standard provides a test method for determining the torque-tension relationship of both external and internal metric threaded fasteners for the purpose of measuring the frictional characteristics of the threaded fasteners. The results obtained by this test are relevant to the test conditions only and should not be utilized for specific applications. The test shall consist of a single installation of the sample fastener in a test fixture using a DC electric power tool. The test sample shall be assembled onto an appropriate mating test part (i.e., a nut will be tested by being driven onto a test screw). The test sample shall be driven against a test washer as the bearing surface.
HISTORICAL
1996-12-01
Standard
USCAR1
This procedure is used to test and evaluate the resistance of fastener surface finishes to laboratory salt spray testing.
HISTORICAL
2005-03-31
Standard
USCAR1-1
This procedure is used to test and evaluate the resistance of fastener surface finishes to laboratory salt spray testing.
CURRENT
2007-03-01
Standard
USCAR11-1
This standard provides a test method for determining the torque-tension relationship of a fastener finish as applied to a surrogate screw for the purpose of measuring the frictional characteristic of the fastener finish. The results obtained by this test shall be used as a process control attribute of the fastener finish and shall not be utilized for specific applications.
CURRENT
2007-04-05
Standard
USCAR10-2
This standard provides a test method for determining the torque-tension relationship of both external and internal metric threaded fasteners for the purpose of measuring the frictional characteristics of the threaded fasteners. The results obtained by this test are relevant to the test conditions only and should not be utilized for specific applications.
HISTORICAL
1998-12-30
Standard
USCAR11
This standard provides a test method for determining the torque-tension relationship of a fastener finish as applied to a surrogate screw for the purpose of measuring the frictional characteristic of the fastener finish. The results obtained by this test shall be used as a process control attribute of the fastener finish and shall not be utilized for specific applications.
HISTORICAL
2004-05-14
Standard
USCAR10-1
This standard provides a test method for determining the torque-tension relationship of both external and internal metric threaded fasteners for the purpose of measuring the frictional characteristics of the threaded fasteners. The results obtained by this test are relevant to the test conditions only and should not be utilized for specific applications. The test shall consist of a single installation of the sample fastener in a test fixture using a constant speed power tool. The test sample shall be assembled onto an appropriate mating test part (i.e., a nut will be tested by being driven onto a test screw). The test sample shall be driven against a test washer as the bearing surface.
Viewing 1 to 20 of 20