Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Enhanced Heat Transfer Coefficient (HTC) Method to Model Air Quench Process: HTC Patching for More Accurate FEA Temperature Calculation

2016-04-05
2016-01-1383
Air quenching is a common manufacturing process in automotive industry to produce high strength metal component by cooling heated parts rapidly in a short period of time. With the advancement of finite element analysis (FEA) methods, it has been possible to predict thermal residual stress by computer simulation. Previous research has shown that heat transfer coefficient (HTC) for steady air quenching process is time and temperature independent but strongly flow and geometry dependent. These findings lead to the development of enhanced HTC method by performing CFD simulation and extracting HTC information from flow field. The HTC obtained in this fashion is a continuous function over the entire surface. In current part of the research, two patching algorithms are developed to divide entire surface into patches according to HTC profile and each patch is assigned a discrete HTC value.
Technical Paper

A New Design of Monolithic Particle Filters with Transverse Isotropic Property for Diesel Motors

1994-03-01
940462
The monolithic DPF made of cordierite ceramic has unsatisfactory on his fatigue or long-term strength. A new design of configuration of plugs combined with the hexagonal channels shows a transversally isotropic property, and can remove the anisotropy of monoliths with square channels. This anisotropy is assumed to be one of main reasons for the failure of monoliths with square channels regarding the experimental results. Considering the honeycomb structure as a homogeneous material based on the Boltzmann continuum can't give the correct behaviour of this structure in a FEM simulation. Another homogenization procedure using the Cosserat theory has been discussed. The FEM stress analyses with structural detail-models show that the maximal tensile stresses in the monolith with square channels exist in the diagonal (i.e. 45°-) direction, or on the edges of channels. This feature is identical with what the theory has predicted and the experimental results have shown.
X