Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Design and Validation of a Novel Model Reference Adaptive Algorithm to Control ETB for Drive-by-wire Applications

2009-06-15
2009-01-1780
In automotive industry the Electronic Throttle Body (ETB) plays a crucial role in drive-by-wire operations since it controls the incoming air into the engine and so the produced torque. This implies the performances of the vehicle in terms of traction, emissions, idle speed regime, cold starting management, thermal transient and smoother movement during tip/in tip/out, strongly depends on the precise control of this device [17]. Despite its apparent simplicity, the behavior of the ETB is affected by many nonlinearities and uncertain parameters which can dramatically alter its dynamics. In order to cope the unwanted nonlinear phenomenons (stick-slip motion, hysteresis, hunting, impact, caos), sophisticated model based control strategies and compensators are proposed in the literature. A time consuming identification parameters of the throttle is fundamental for these approaches and it is the main drawback for their application.
Technical Paper

Idle Speed Control of GDI-SI Engines via ECU-1D Engine Co-Simulation

2010-10-25
2010-01-2220
Idle Speed Control plays a crucial role to reduce fuel consumption that turns in both a direct economic benefit for customers and CO\d reduction particularly important to tackle the progressive global environmental warming. Typically, control strategies available in the automotive literature solve the idle speed control problem acting both on the throttle position and the spark advance, while the Air-Fuel Ratio (AFR), that strongly affects the indicated engine torque, is kept at the stoichiometric value for the sake of emission reduction. Gasoline Direct Injection (GDI) engines, working lean and equipped with proper mechanisms to reduce NOx emissions, overcome this limitation allowing the AFR to be used for the idle speed regulation.
X