Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Tensile Material Properties of Fabrics for Vehicle Interiors from Digital Image Correlation

2013-04-08
2013-01-1422
Fabric materials have diverse applications in the automotive industry which include upholstery, carpeting, safety devices, and interior trim components. The textile industry has invested substantial effort toward development of standard testing techniques for characterizing mechanical properties of different fabric types (e.g. woven and knitted). However, there are presently no standards for determination of Young's modulus, Poisson's ratio and tensile stress-strain properties required for the detailed modeling of fabric materials in vehicle structural simulations. This paper presents results from uniaxial tensile tests of different automotive seat cover fabric materials. Digital image correlation, a full field optical method for measuring surface deformation, was used to determine tensile properties in both the warp/wale and the weft/course directions. The fabrics were tested with and without the foam backing.
Journal Article

Stable and Accurate LS-DYNA Simulations with Foam Material Models: Optimization of Finite Element Model Parameters

2017-03-28
2017-01-1338
Cellular foams have found a predominant application in automotive industry for efficient energy absorption so as to meet stringent and continuously improving vehicle crashworthiness and occupant protection criteria. The recent inclusion of pedestrian protection regulations mandate the use of foams of different densities for impact energy absorption at identified impact locations; this has paved the way for significant advancements in foam molding techniques such as dual density and tri-density molding. With increased emphasis on light-weighting, solutions involving the use of polymeric or metallic foams as fillers in hollow structures - foam encapsulated metal structures - are being explored. Another major automotive application of foams is in the seat comfort area, which again involves foams of intricate shapes and sizes. In addition, a few recently developed foams are anisotropic, adding on to the existing complexities.
X