Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

A Novel Accelerated Aging System to Study Lubricant Additive Effects on Diesel Aftertreatment System Degradation

2008-06-23
2008-01-1549
The challenge posed by the long run times necessary to accurately quantify ash effects on diesel aftertreatment systems has led to numerous efforts to artificially accelerate ash loading, with varying degrees of success. In this study, a heavy-duty diesel engine was outfitted with a specially designed rapid lubricant degradation and aftertreatment ash loading system. Unlike previous attempts, the proposed methodology utilizes a series of thermal reactors and combustors to simulate all three major oil consumption mechanisms, namely combustion in the power cylinder, evaporative and volatile losses, and liquid losses through the valve and turbocharger seals. In order to simulate these processes, each thermal reactor allows for the precise control of the level of lubricant additive degradation, as well as the form and quantity of degradation products introduced into the exhaust upstream of the aftertreatment system.
Technical Paper

Correlations among Ash-Related Oil Species in the Power Cylinder, Crankcase and the Exhaust Stream of a Heavy-Duty Diesel Engine

2007-07-23
2007-01-1965
In this study, changes in the composition of lubricant additives in the power cylinder oil are examined. Samples are extracted from a single cylinder heavy-duty diesel engine in two locations during engine operation; the crankcase and the top ring groove of the piston. Emissions of lubricant-derived ash-forming elements are lower than would be expected based on oil consumption and crankcase oil composition. This occurs partly because the inorganic additive compounds are less volatile than light-end hydrocarbons in the base oil. The tribology of the piston ring pack also affects the composition of the oil consumed in the power cylinder system. The elemental composition of oil extracted from the top ring groove is significantly different than the crankcase oil. Additive metals are concentrated in the top ring groove of the power cylinder. Detergent compounds (i.e. Ca and Mg) concentrate due to the volatility of the base oil. The metals associated with ZDDP (i.e.
Technical Paper

Oil Conditioning as a Means to Minimize Lubricant Ash Requirements and Extend Oil Drain Interval

2009-06-15
2009-01-1782
A novel approach to condition the lubricant at a fixed station in the oil circuit is explored as a potential means to reduce additive requirements or increase oil drain interval. This study examines the performance of an innovative oil filter which releases no additives into the lubricant, yet enhances the acid control function typically performed by detergent and dispersant additives. The filter chemically conditions the crankcase oil during engine operation by sequestering acidic compounds derived from engine combustion and lubricant degradation. Long duration tests with a heavy-duty diesel engine show that the oil conditioning with the strong base filter reduces lubricant acidity (TAN), improves Total Base Number (TBN) retention, and slows the rate of viscosity increase and oxidation. The results also indicate that there may be a reduction in wear and corrosion.
Technical Paper

Characteristics and Effects of Ash Accumulation on Diesel Particulate Filter Performance: Rapidly Aged and Field Aged Results

2009-04-20
2009-01-1086
Ash, mostly from essential lubricant additives, affects diesel particulate filter (DPF) pressure-drop sensitivity and limits filter service life. It raises concern in the lubricant industry to properly specify new oils, and engine and aftertreatment system manufacturers have attempted to find ways to mitigate the problem. To address these issues, results of detailed measurements of ash characteristics in the DPF and their effects on filter performance are presented. In this study, a heavy-duty diesel engine was outfitted with a specially designed rapid lubricant degradation and aftertreatment ash loading system. Unlike previous studies, this system allows for the control of specific exhaust characteristics including ash emission rate, ash-to-particle ratio, ash composition, and exhaust temperature and flow rates independent of the engine operating condition.
X