Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Axle Drive and Brake-Based Traction Control Interaction

2011-09-13
2011-01-2160
Brake-based traction control systems (TC), which utilize the brake of a spinning wheel of the drive axle, are widely used in passenger cars and light trucks, and recently were applied to all-wheel drive construction equipment. Such machines employ various types of interwheel drive systems (i.e., axle drives such as open differentials, limited slip differentials, etc.) to control torque split between the drive wheels and, thus, improve vehicle traction performance. As experimental research showed, the interaction between the traction control system and the axle drive can lead to unpredictable changes in vehicle performance. Lack of analytical work in this area motivated this study of the interaction and impact of the two systems on each other and the dynamics and performance of a drive axle.
Technical Paper

Innovative Graduate Program in Mechatronics Engineering to Meet the Needs of the Automotive Industry

2010-10-19
2010-01-2304
A new inter-disciplinary degree program has been developed at Lawrence Technological University: the Master of Science in Mechatronic Systems Engineering Degree (MS/MSE). It is one of a few MS-programs in mechatronics in the U.S.A. today. This inter-disciplinary program reflects the main areas of ground vehicle mechatronic systems and robotics. This paper presents areas of scientific and technological principles which the Mechanical Engineering, Electrical and Computer Engineering, and Math and Computer Science Departments bring to Mechatronic Systems Engineering and the new degree program. New foundations that make the basis for the program are discussed. One of the biggest challenges was developing foundations for mechanical engineering in mechatronic systems design and teaching them to engineers who have different professional backgrounds. The authors first developed new approaches and principles to designing mechanical subsystems as components of mechatronic systems.
Technical Paper

All-Wheel Driveline Mechatronic Systems: Principles of Wheel Power Management

2006-04-03
2006-01-0580
All-wheel driveline systems with electronic torque control on each and all wheels, torque vectoring and torque management devices, hybrid electro-mechanical systems, and individual electro (hydraulic) motors in the wheels have been gaining a bigger interest in the industry for recent years. The majority of automotive applications are in vehicle stability control that is performed by controlling the vehicle yaw moment. Some devices also improve vehicle traction performance. The proposed paper develops a methodology that includes the key-principles in all-wheel driveline systems design and is based on the wheel power management as a broader analytical approach. The proposed principles relate to the optimization of power distributions to the drive wheels in both rectilinear and curvilinear vehicle motion. Inverse dynamics is the basis for the developed methodology.
Technical Paper

Tire Longitudinal Elasticity and Effective Rolling Radii: Experimental Method and Data

2005-04-11
2005-01-1823
To evaluate traction and velocity performance and other operational properties of a vehicle requires data on some tire parameters including the effective rolling radius in the driven mode (no torque on a wheel), the effective radii in the drive mode (torque applied to the wheel), and also the tire longitudinal elasticity. When one evaluates vehicle performance, these parameters are extremely important for linking kinematic parameters (linear velocity and tire slip coefficient) with dynamic parameters (torque and traction net force) of a tired wheel. This paper presents an experimental method to determine the above tire parameters in laboratory facilities. The facilities include Lawrence Technological University's 4x4 vehicle dynamometer with individual control of each of the four wheels, Kistler RoaDyn® wheel force sensors that can measure three forces and three moments on a wheel, and a modern data acquisition system. The experimental data are also presented in the paper.
X