Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Emissions Comparisons of an Insulated Turbocharged Multi-Cylinder Miller Cycle Diesel Engine

1998-02-23
980888
The experimental emissions testing of a turbocharged six cylinder Caterpillar 3116 diesel engine converted to the Miller cycle operation was conducted. Delayed intake valve closing times were also investigated. Effects of intake valve closing time, injection time, and insulation of piston, head, and liner on the emission characteristics of the Miller cycle engine were experimentally verified. Superior performance and emission characteristic was achieved with a LHR insulated engine. Therefore, all emission and performance comparisons are made with LHR insulated standard engine with LHR insulated Miller cycle engine. Particularly, NOx, CO2, HC, smoke and BSFC data are obtained for comparison. Effect of increasing the intake boost pressure on emission was also studied. Poor emission characteristics of the Miller cycle engine are shown to improve with increased boost pressure. Performance of the insulated Miller cycle engine shows improvement in BSFC when compared to the base engine.
Technical Paper

A Correction Factor Investigation of a Turbocharged Diesel Engine

1971-02-01
710821
The increased use of turbocharged diesel engines for automotive applications has accentuated the need for accurate power correction functions. The study's purpose was to evaluate the effect of dry ambient intake air pressure, ambient intake air temperature, engine speed, and humidity upon the performance of a turbocharged diesel engine. Each effect is examined individually and weighted in a final relationship for standardized horsepower. Power correction formulas, in a form readily comparable to typical correction functions, are derived from the results. Testing was conducted through the use of various special test procedures, calibrations, and test equipment. With computer aid, test evaluation was conducted by utilizing various analytical and graphical methods. An accuracy comparison between actual and calculated values of power correction is presented.
Technical Paper

Engine Component Design Methodology for Ceramic and Ceramic-Matrix Composite Materials

1988-02-01
880193
In the past two years, significant progress has been made in the application of ceramic-matrix composite materials to low heat rejection engine components. However, past R&D programs have identified a number of critical areas which require additional effort including: Life Prediction Methodology, Non-Destructive Testing, Design Methods, Data Base Development, and Verification of Design Rules. This paper discusses an integrated design methodology for addressing these research needs. The paper concludes with a specific example of a ceramic fiber-reinforced metal matrix composite piston which has been designed for application to advanced adiabatic engines.
X