Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Boiling Coolant Vapor Fraction Analysis for Cooling the Hydraulic Retarder

2015-04-14
2015-01-1611
The hydraulic retarder is the most stabilized auxiliary braking system [1-2] of heavy-duty vehicles. When the hydraulic retarder is working during auxiliary braking, all of the braking energy is transferred into the thermal energy of the transmission medium of the working wheel. Theoretically, the residual heat-sinking capability of the engine could be used to cool down the transmission medium of the hydraulic retarder, in order to ensure the proper functioning of the hydraulic retarder. Never the less, the hydraulic retarder is always placed at the tailing head of the gearbox, far from the engine, long cooling circuits, which increases the risky leakage risk of the transmission medium. What's more, the development trend of heavy load and high speed vehicle directs the significant increase in the thermal load of the hydraulic retarder, which even higher than the engine power.
Technical Paper

Desulafation Dynamics of NOx Storage Catalysts

2002-10-21
2002-01-2886
The dynamics of the desulfation of a Ba-containing and a K-containing NOx storage catalyst have been investigated. When both catalysts were desulfated using a temperature ramp in exhaust that simulated gasoline exhaust with a 13:1 A/F, the maximum desulfation rate for the Ba-containing catalyst was seen at 620°C, while the maximum for the K-containing catalyst was at 760°C. This is consistent with the widely known fact that K2SO4 is more stable than BaSO4. The BaSO4 decomposed when either hydrogen or water was in the feed, but not when both were absent. The decomposition, therefore, requires hydrogen to be present and the water can provide sufficient hydrogen for the decomposition via the water-gas shift reaction. With either water or hydrogen in the uncycled feed, the primary sulfur compound formed from the decomposition was H2S for both the Ba and K-containing catalysts.
Technical Paper

Development of New I3 1.0L Turbocharged DI Gasoline Engine

2017-10-08
2017-01-2424
In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
X