Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Desulafation Dynamics of NOx Storage Catalysts

2002-10-21
2002-01-2886
The dynamics of the desulfation of a Ba-containing and a K-containing NOx storage catalyst have been investigated. When both catalysts were desulfated using a temperature ramp in exhaust that simulated gasoline exhaust with a 13:1 A/F, the maximum desulfation rate for the Ba-containing catalyst was seen at 620°C, while the maximum for the K-containing catalyst was at 760°C. This is consistent with the widely known fact that K2SO4 is more stable than BaSO4. The BaSO4 decomposed when either hydrogen or water was in the feed, but not when both were absent. The decomposition, therefore, requires hydrogen to be present and the water can provide sufficient hydrogen for the decomposition via the water-gas shift reaction. With either water or hydrogen in the uncycled feed, the primary sulfur compound formed from the decomposition was H2S for both the Ba and K-containing catalysts.
Technical Paper

Experimental Study of NOx Reduction by Passive Ammonia-SCR for Stoichiometric SIDI Engines

2011-04-12
2011-01-0307
As vehicle fuel economy requirements continue to increase it is becoming more challenging and expensive to simultaneously improve fuel consumption and meet emissions regulations. The Passive Ammonia SCR System (PASS) is a novel aftertreatment concept which has the potential to address NOx emissions with application to both lean SI and stoichiometric SI engines. PASS relies on an underfloor (U/F) SCR for storage of ammonia which is generated by the close-coupled (CC) TWCs. For lean SI engines, it is required to operate with occasional rich pulses in order to generate the ammonia, while for stoichiometric application ammonia is passively generated through the toggling of air/fuel ratio. PASS serves as an efficient and cost-effective enhancement to standard aftertreatment systems. For this study, the PASS concept was demonstrated first using lab reactor results which highlight the oxygen tolerance and temperature requirements of the SCR.
Technical Paper

Applications of a DOE-Based MDO in Full Vehicle Crash Safety and NVH Design

2021-04-06
2021-01-0926
In this paper, the MDO analysis is applied to the design integration in terms of NVH and crash safety. Considering the difference of characteristics in these two fields, all the design variables are used to construct the response surfaces in the NVH analysis, while for crash safety analysis, these design variables are split into three groups, front, side and rear, to reduce the computational cost. Many of the structure performance indices in the NVH and crash safety fields are included as the constraints in the MDO analysis, which proves that the design integration of these two fields through MDO analysis is feasible. A comparison of crash safety optimization and crash safety-NVH MDO is done through a parallel-coordinate diagram. The difference provides the CAE engineers to find the guidance to modify the original design architecture.
X