Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Automobile Interior Noise Prediction Based on Energy Finite Element Method

2011-04-12
2011-01-0507
For the purpose of predicting the interior noise of a passenger automobile at middle and high frequency, an energy finite element analysis (EFEA) model of the automobile was created using EFEA method. The excitations including engine mount excitation and road excitation were measured by road experiment at a speed of 120 km/h. The sound excitation was measured in a semi-anechoic chamber. And the wind excitation was calculated utilizing numeric computation method of computational fluid dynamics (CFD). The sound pressure level (SPL) and energy density contours of the interior acoustic cavity of the automobile were presented at 2000 Hz. Meanwhile, the flexural energy density and flexural velocity of body plates were calculated. The SPL of interior noise was predicted and compared with the corresponding value of experiment.
Technical Paper

A Finite Element Approach to Study the Effect of High Modulus Urethane on Body Stiffness

1998-02-23
980463
Urethane is utilized to bond the windshield and backlite to the vehicle frame. The contribution of different modulii of glass bonding urethane adhesives on the stiffness characteristics of the vehicle is studied through finite element analysis. The modal analyses of a finite element body-in-white model with different modulii of urethanes are performed, and the analyses show that high modulus urethane makes notable contribution to the vehicle stiffness. The optimized modulus of urethane adhesive is suggested based on the analyses.
Technical Paper

Functional Safety Development of Bi-Directional On-Board Charger for New Energy Vehicles

2020-04-14
2020-01-0608
BOBC (Bi-directional on-board charger) is a power conversion system component for AC charging and discharging of new energy vehicles. It has two working modes: AC charging mode and AC discharge mode. In the two working modes, the BOBC belongs to both the controller and the actuator. In some extreme cases such as communication and control failure of the AC charging mode, new energy vehicles have the risk of high-voltage battery overcharging and overheating, which will lead to high-voltage battery fire or even explosion. In the AC discharge mode, it involves the actual operation of the users on electricity, and the risk of short circuit and open circuit may happen in the process, which endangers the safety of the users. Based on the risks brought by the two working modes, it should pay more attention to the safety of the BOBC.
X