Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

2009-11-02
2009-01-2769
The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and1H/13C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT™) apparatus.
Technical Paper

Sensitivity Analysis of the Low Temperature Combustion Index to Driving Cycle and Vehicle Specifications

2019-04-02
2019-01-0959
Homogeneous charge compression ignition (HCCI), a low temperature combustion (LTC) engine concepts, offers the potential to significantly reduce NOx and particulate, while also produce diesel-like efficiency. However, many technical challenges, including an established fuel performance metric, have hindered the advancement of this technology. In the present work, we used a design-of-experiments approach to address sensitivity of our previously-developed metric for LTC engine fuel performance: the LTC index. Using two different statistical strategies: one-at-a-time (OAT) analysis and 23 factorial design, we targeted driving cycle, weight, maximum power, as well as compression ratio as input parameters to determine their individual and interactive impacts to the LTC index for a wide range of fuels relevant to advanced internal combustion engines research.
X