Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

The Effect of a Three-Way Catalytic Converter on Particulate Matter from a Gasoline Direct-Injection Engine During Cold-Start

2013-04-08
2013-01-1305
This work investigates the effect of a three-way catalytic converter and sampling dilution ratio on nano-scale exhaust particulate matter emissions from a gasoline direct-injection engine during cold-start and warm-up transients. Experimental results are presented from a four cylinder in-line, four stroke, wall-guided direct-injection, turbo-charged and inter-cooled 1.6 litre gasoline engine. A fast-response particulate spectrometer for exhaust nano-particle measurement up to 1000 nm was utilised. It was observed that the three-way catalytic converter had a significant effect on particle number density, reducing the total particle number by up to 65 % over the duration of the cold-start test. The greatest change in particle number density occurred for particles less than 23 nm diameter, with reductions of up to 95 % being observed, whilst the number density for particles above 50 nm diameter exhibited a significant increase.
Technical Paper

The Effect of Engine Operating Conditions on Engine-out Particulate Matter from a Gasoline Direct-injection Engine during Cold-start.

2012-09-10
2012-01-1711
This work investigates the effect of engine operating conditions and exhaust sampling conditions (i.e. dilution ratio) on engine-out, nano-scale, particulate matter emissions from a gasoline direct-injection engine during cold-start and warm-up transients. The engine used for this research was an in-line four cylinder, four stroke, wall-guided direct-injection, turbo-charged and inter-cooled 1.6 l gasoline engine. A fast-response particulate spectrometer for exhaust nano-particle measurement up to 1000 nm was utilized, along with a spark-plug mounted pressure transducer for combustion analysis. It was observed that the total particle count decreases during the cold-start transient, and has a distinct relationship with the engine body temperature. Tests have shown that the engine body temperature may be used as a control strategy for engine-out particulate emissions.
X