Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Ways to meet future emission standards for heavy Sports Utility Vehicles - SUV

2000-06-12
2000-05-0288
Diesel engines belong to the most efficient power sources for any kind of on-road vehicle, but especially in Europe increasingly for passenger cars. However, more stringent exhaust emission regulations, which will come into force world-wide in industrialised countries during the first decade of the next century will require NOx and particulate emissions to be reduced by up to 60% and more from today's levels. To meet these future emission standards particularly for heavier passenger vehicles, such as SUVs, Pickup Trucks and Light Commercial Vehicles, as well as for heavy luxury class passenger cars, the application of new technologies including advanced exhaust gas aftertreatment systems will be indispensable, especially in view of maintaining the thermal efficiency of diesel engines relative to gasoline engines.
Technical Paper

Impact of Future Exhaust Gas Emission Legislation on the Heavy Duty Truck Engine

2001-03-05
2001-01-0186
Emission standards as proposed in Europe and the United States for heavy duty diesel engines will require a NOx and particulate reduction of more than 90%. This cannot be achieved by internal engine measures alone. Aftertreatment systems, for either one or both emission components, plus sophisticated electronic control strategies will be required. Various strategies to comply with EU 4, 5 and US 2007 are discussed, also showing their impact on engine performance. For typical 1 and 2 liter per cylinder engines, emission reduction concepts are assessed to identify the most suitable technology for major worldwide markets. The assessment is based on thermodynamic studies, test-bed results and estimates on cost and infrastructure implications.
Technical Paper

Performance of a Urea SCR System Combined with a PM and Fuel Optimized Heavy-Duty Diesel Engine Able to Achieve the Euro V Emission Limits

2002-10-21
2002-01-2885
In order to meet the Euro V heavy-duty diesel emission standard legislation limits, a diesel engine can be optimized by internal means to give low particulate emissions and lower fuel consumption. These modifications of the engine lead inevitably to higher NOx emissions due to the NOx/PM trade off. An efficient Urea SCR after-treatment system is then able to reduce the higher NOx emission to below the Euro V 2.0g/kWh legislation limit. This paper presents tests made on a PM optimized 12 liter heavy-duty diesel engine together with a urea SCR after-treatment system. The optimized engine had engine out particulate emissions of about 0.04 g/kWh and NOx emissions of 9 g/kWh for the ESC and 8,5 g/kWh for the ETC. The fuel consumption of the optimized engine was 194 g/kWh for the ESC and 198 g/kWh for the ETC as compared to state of the art Euro III engines of typically 210 g/kWh for the ESC, giving significant fuel savings of 7.5 %.
Technical Paper

NOx Reduction Strategies for DI Diesel Engines

1992-02-01
920470
This paper reports on research and development work conducted at AVL to determine the NOx-reduction potential of in-cylinder charge conditions, fuel injection system parameters, exhaust gas recirculation, fuel formulation, and exhaust gas aftertreatment by catalyst. Based on these findings, development options are derived and assigned to the various future emission standards in USA, Europe and Japan.
Technical Paper

Ways to Meet Future Emission Standards with Diesel Engine Powered Sport Utility Vehicles (SUV)

2000-03-06
2000-01-0181
The paper reports on the outcome of a still on-going joint-research project with the objective of establishing a demonstrator high speed direct injection (HSDI) diesel engine in a Sport Utility Vehicle (SUV) which allows to exploit the effectiveness of new engine and aftertreatment technologies for reducing exhaust emissions to future levels of US/EPA Tier 2 and Euro 4. This objective should be accomplished in three major steps: (1) reduce NOx by advanced engine technologies (cooled EGR, flexible high pressure common rail fuel injection system, adapted combustion system), (2) reduce particulates by the Continuous Regeneration Trap (CRT), and (3) reduce NOx further by a DeNOx aftertreatment technology. The current paper presents engine and vehicle results on step (1) and (2), and gives an outlook to step (3).
X