Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effective Catalyst layout for ultra thin-wall and high cell-density ceramic substrate

1997-12-31
973118
Catalytic performance can be improved by reducing bulk density (BD) and increasing geometric surface area (GSA) of ceramic substrate. Ultra thin-wall / high cell-density ceramic substrates, such as 3 mil/ 600 cpsi and 2 mil/ 900 cpsi have improved the catalytic performance over the conventional 6 mil/ 400 cpsi substrates. and are expected to help in complying with future emission regulations, as well as catalyst down-sizing. This paper describes the effects of BD and GSA using Pd-based catalysts. The significant reduction of hydrocarbons emissions was demonstrated at close-coupled location, and dual bed design was proven effective. The effectiveness at under-floor location was not as significant as the close-coupled location. This paper proposes the converter layout of dual bed close-coupled converter consisting of small volume 2 mill 900 cpsi front catalyst and large volume 3 mil/ 600 cpsi rear catalyst.
Technical Paper

Advanced Ceramic Substrate: Catalytic Performance Improvement by High Geometric Surface Area and Low Heat Capacity

1997-02-24
971029
Catalytic performance can be improved by increasing geometric surface area (GSA) and reducing bulk density (BD), namely heat capacity, using high cell-density / thinwall advanced ceramic substrates. The advanced substrates, such as 3 mil/600 cpsi and 2 mil/900 cpsi have improved the catalytic performance over the conventional substrates, and are expected to help in complying with future emission regulations, as well as catalyst downsizing. This paper describes the effects of GSA and BD using Pd-based catalysts. The reduction of hydrocarbons emissions was demonstrated significantly at close-coupled location, and dual bed design was proven effective. The effectiveness at under-floor location was not as significant as the close-coupled location.
X