Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Research on Intelligent Layout of Door Hinge Based on CATIA CAA

2014-04-01
2014-01-0753
As one of the most important auto-body moving parts, door hinge is the key point of door design and its accessories arrangement, also the premise of the door kinematic analysis. We proposed an effective layout procedure for door hinge and developed an intelligent system on CATIA CAA platform to execute it. One toolbar and five function modules are constructed - Axis Arrangement, Section, Parting Line, Kinematic, Hinge Database. This system integrated geometrical algorithms, automatically calculate the minimum clearances between doors, fender and hinges on sections to judge if the layout is feasible. As the sizes of the clearances are set to 0s, the feasible layout regions and extreme start/end points are shown in parts window, which help the engineer to check the parting line and design a new one. Our system successfully implemented the functions of five modules for the layout of door hinge axis and parting line based on a door hinge database.
Technical Paper

Accelerated Degradation of Li-Ion Batteries for High Rate Discharge Applications

2020-04-14
2020-01-0452
The U.S. Army has been pursuing vehicle electrification to achieve enhanced combat effectiveness. The benefits include new capabilities that require high power pulse duty cycles. However as the vehicle platform size decreases, the Energy Storage System (ESS) pulse power discharge rates (> 40 C rate) to support system requirements can be significantly greater than commercial ESS. Results are reported of high power pulse duty cycles on lithium iron phosphate cells that show a dramatic loss in lifetime performance. For a 2 s and 3 s pulse duration tests, the observed degradation is 22 % and 32 % respectively. Although these cells were thermally managed in a convective chamber at 10°C, the 2 s pulse showed a 31°C temperature rise and the 3 s pulse, a 48°C temperature rise. The decreased lifetime is attributed to increased lithium loss due to the increased temperature during pulse discharging.
Technical Paper

Technical Challenges for Vehicle 14V/28V Lithium Ion Battery Replacement

2011-04-12
2011-01-1375
Modern commercial and military vehicles are equipped with more electrical accessories and demand more power than ever before. This causes an increase in the weight of the battery as well as drives the battery to end of life when the vehicle is stationary with the engine off. Lithium ion batteries, which are known for their high power and energy to weight density, long cycle life, and low self-discharge rate, are considered to be an alternative for the replacement of existing Starting, Lighting, and Ignition (SLI) lead acid batteries. Lithium ion battery chemistry offers double the reserve time of the stock battery and a significantly greater number of charging and discharging cycles while providing weight savings. There is no acid inside a lithium ion battery to cause corrosion, which eliminates potential damage to a vehicle from chemical spills and poisonous gases.
Journal Article

A New Solid Electrolyte with A High Lithium Ionic Conductivity for Solid-State Lithium-Ion Batteries

2023-04-11
2023-01-0519
Solid-state lithium-ion batteries that use a solid electrolyte may potentially operate at wide temperatures and provide satisfactory safety. Moreover, the use of a solid electrolyte, which blocks the formation of lithium dendrites, allows batteries to use metallic lithium for the anode, enabling the batteries gain an energy density significantly higher than that of traditional lithium-ion batteries. Solid electrolytes play a role of conducting lithium ions and are the core of solid-state lithium-ion batteries. However, the development of solid lithium electrolytes towards a high lithium ionic conductivity, good chemical and electrochemical stability and scalable manufacturing method has been challenging. We report a new material composed of nitrogen-doped lithium metaphosphate, denoted as NLiPO3.
X