Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Sulfur Tolerance and DeSOx Studies on Diesel SCR Catalysts

2008-04-14
2008-01-1023
Base metal/zeolite catalysts, particularly containing copper and iron, are among the leading candidates for treatment of NOx emissions for diesel applications. Even with the use of ultra low sulfur fuel, sulfur poisoning is still a durability issue for base metal/zeolite SCR catalysts. In this study, the impact of sulfur poisoning on SCR activity and the stored sulfur removal effectiveness were investigated on several Cu and Fe/zeolite SCR catalysts after different thermal aging. The impact of sulfur was more significant on the Cu than on Fe/zeolite SCR catalysts for the NOx activity. It was found that the sensitivity of thermal aging status to the sulfur poisoning impact was different. The impact of sulfur on NOx activity changed with thermal aging on some catalysts, while it remained relatively the same for other catalysts. The most thermally durable SCR catalyst was not necessarily the most durable to sulfur poisoning.
Technical Paper

Deactivation of Cu/Zeolite SCR Catalyst under Lean-Rich Aging Conditions

2010-04-12
2010-01-1180
A lean-rich hydrothermal aging was used to study the deactivation of Cu-zeolite SCR catalyst that has enhanced stability. Impact of DOC upstream on the SCR catalyst during the lean-rich aging was also investigated. The LR hydrothermal aging was conducted with the presence of hydrocarbon, CO and H₂ at different O₂ levels. It was found that the SCR catalyst was active for the oxidation of CO, H₂ and hydrocarbon, resulting in significant exotherm across the catalyst. In addition to hydrothermal aging, reductive aging, especially the presence of H₂ in the aging gas stream without O₂ presence during the L-R aging, might also contribute to the Cu/zeolite SCR catalyst deactivation. The impacts of DOC upstream on Cu/zeolite SCR catalysts depended on the aging temperatures. At lower aging temperature, the uncompleted oxidation of hydrocarbon and CO on the DOC might cause steam reforming and water-gas shift reactions on the DOC to form reductive gas stream.
X