Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Research and Development Program of the Next-generation Environmentally Friendly Vehicles(EFVs) in Japan

2004-03-08
2004-01-0644
The increase in number of automobiles due to its convenience brought serious increases in environmental load. The rate of attainment of environmental standards for nitrogen dioxide (NO2) and suspended particulate matter (SPM) in urban areas is still low in Japan. Diesel vehicles emit the vast majority of air pollutants from exhaust. Therefore, developing emission measures, particularly for diesel vehicles, is an urgent task for addressing air pollution. Furthermore, at the Third Conference of the Parties to the UN Framework Convention on Climate Change (COP 3) held in Kyoto in December 1997, Japan pledged to reduce greenhouse gas emissions to 6 percent below 1990 levels for the first commitment period of 2008 to 2012. To address vehicle emissions, Japan is gradually introducing increasingly strict NOx and particulate matter regulations.
Technical Paper

Combustion Improvement and Exhaust Emissions_Characteristics in a Direct Injection Natural Gas Engine by Throttling and Exhaust Gas Recirculation

2001-03-05
2001-01-0737
A natural gas direct injection test engine equipped with a newly developed natural gas injector was built. High total hydrocarbon (THC) emission at part-load and high NOx emission at high-load remain as problems for direct injection natural gas engines. THC reduction and combustion improvement by throttling and NOx reduction by EGR were investigated. The following results were obtained: (1) the combustion at light and medium load conditions is improved by throttling. It is possible to improve the thermal efficiency at light-load in spite of the pumping loss by throttling. THC emissions are greatly decreased in this condition; (2) a large NOx reduction can be obtained without combustion deterioration by appropriate EGR at high-load conditions; and (3) it is possible to decrease both THC and NOx emissions by both throttling and EGR at part-load conditions.
Technical Paper

Development of NOx Storage Reduction System for a Dimethyl Ether Engine

2004-06-08
2004-01-1832
In recent years, the dimethyl ether (DME) fuel has been attracting attention as an alternative engine in terms of diesel utilization. This is (a) because its cetane number is close to that of diesel fuel, (b) an innovative chemical process has been developed to produce DME efficiently from natural gas and coal, and (c) DME as a fuel has fewer environment-polluting characteristics than diesel fuel. Inasmuch as DME fuel have lower molecular weights, a molecular C-O bond, and are much more volatile or evaporative than diesel fuel, it is possible to control particulate matters much more easily when DME is used instead of diesel fuel. As for NOx, however, even when using DME, there still remain problems under stringent exhaust gas regulations. Developed and optimized accordingly has been the NOx storage-reduction (NSR) system, using the DME engine with a common-rail injection system. The NSR system is coated with an NOx storage catalyst principally comprised of Pt and Rh.
Technical Paper

NOx Reduction on Direct Injection Natural Gas Engines

1999-10-25
1999-01-3608
Direct injection natural gas engines need to produce in the mixing process between the fuel jet and the air in the cylinder a “stratified” fuel-air mixture, with an easily ignitable composition near the spark plug at the time of ignition. Stratified-charge engines have a tendency to produce high NOx emissions due to the high temperature of burning areas at the start of combustion since the fuel-air mixture is not uniform. Therefore, it is necessary to reduce NOx emissions from direct injection natural gas engines. The objective of this study is to investigate measures to reduce emissions, especially NOx emissions, from direct injection natural gas engines. A single cylinder test engine was equipped with a newly developed high-pressure electromagnetic injector and a spark plug.
X