Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Radiation Noise Analysis for Electric Scooter Swing-arm

2011-11-08
2011-32-0650
Traditionally, a Boundary Element Method (BEM) is often used for a radiation noise analysis. In recent years, to define an infinite region, a Finite Element Method (FEM) that can use an infinite boundary condition has been developed. However, studies on the radiation noise analysis by the FEM are few. Recently a number of an electric scooter has been increased. One of development issues is a radiation noise by a vibration of a wall surface of a swing-arm. In this paper, the vibration of the wall surface of the swing-arm is calculated, and a sound pressure level (SPL) of the radiation noise is calculated using a result of the frequency response analysis. And compare results of an experimental and an analytical sound pressure, its results were matched to within 5% error. Furthermore we used the method of this paper, proposed the model to reduce the radiation noise 10dB. Then we compare with the FEM and the BEM to verify the computation time and the mesh size.
Technical Paper

Effect of Varnish Impregnation Range of Motor Stator on Vibration Characteristics

2022-01-09
2022-32-0085
A motor for an electric vehicle has a stator core and a coil bonded with insulating varnish. The Impregnation of varnish in the stator and at the coil end greatly affects the vibration characteristics of the stator. In this paper, the experimental modal analysis of the sample stator was carried out to measure the vibration characteristics, and a vibration analysis model of the stator with the finite element method was developed. The laminated structure of an electromagnetic steel plate constituting a stator is modeled by anisotropic material properties. The joint stiffness of the varnish which connects the stator and the coil is modeled. We also modeled the varnish applied to the coil end. We carried out eigenvalue analysis and frequency response analysis. The simulation results are basically consistent with the experimental mode shapes and natural frequencies under 1000 Hz.
X