Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of a Rotating Plasma Burner for the Regeneration of Diesel Particulate Filters

2013-10-14
2013-01-2503
A Diesel Particulate Filter (DPF) is an effective technology for reducing Particulate Matter (PM) emitted from diesel engines. In modern light duty diesel engines, DPF is regenerated by the post-fuel-injection method. In this method, the fuel is injected into the combustion chamber during the expansion stroke to produce heat to burn out the PM trapped in the DPF. However, this method also causes several problems, such as complicated engine torque control and oil dilution by fuel. In this study, a rotating plasma burner was developed for DPF regeneration as an alternative to the postfuel-injection method. Since it is important to reduce the electric energy consumption for plasma generation, which is directly related with electric noise and system cost, several design factors, such as the boosting voltage of transformers, electrode gaps, and plasma frequency were evaluated. A transformer with a low boosting voltage is desirable to ensure low electric noise.
Technical Paper

Flow Modeling for the Branched Intake Manifold Engine

1996-02-01
960079
A flow model is a convenient tool for developing the engine intake system. Two flow models for the branched engine intake were developed by the finite difference method and the method of characteristics. The results from the models were compared with the experimental data and the appropriate boundary conditions were established for each model. Modeling the flow at the intake and exhaust valves with a cylinder and at the pipe branches were the most critical part of the flow models affecting the accuracy of the solutions. From two models, it was found that the finite difference model was simpler than the characteristic model in formulation with the better accuracy. The effects of valve timings and intake geometry were studied by the flow models to design the optimum intake system.
X