Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Hierarchical Vehicle Stability Control Strategy Based on Unscented Kalman Filter Estimation

2022-03-29
2022-01-0294
High-speed vehicle is prone to instability under bad road conditions, causing many safety accidents such as tail-flicking and overturning. Stability control could assist vehicle to drive safely and stably by adjusting the additional yaw moment. However, most of the existing stability control strategies directly invoke the information of the sideslip angle of the centroid that is difficult to obtain on the vehicle, and carry out complex controller design, which deviates from the actual application. In order to achieve a complete set of stability control architecture oriented to practical applications, this paper designs a hierarchical vehicle stability control strategy based on differential braking and state estimation technology.
Technical Paper

Analysis and optimization for generated axial force of Adjustable Angular Roller tripod joint

2024-04-09
2024-01-2887
The tripod constant velocity joint (CVJ) has been widely used in mechanical systems due to its strong load-bearing capacity, high efficiency, and reliability. It has become the most commonly used plunging-type CVJ in automotive drive-shaft. A generated axial force (GAF) with a third-order characteristic of driven shaft speed is caused by the internal friction and motion characteristics in a tripod joint. The large GAF has a negative impact on the NVH (Noise, Vibration, and Harshness) characteristics of automobiles, and this issue is particularly prominent in new energy vehicles. A multi-body dynamic model of the Adjustable Angular Roller (AAR) tripod CVJ is developed to calculate and analyze the GAF. To describe the internal motion of the AAR tripod CVJ, the contact interactions between the roller and the track or the trunnion were modeled using non-linear equivalent spring-damping models for contact collision forces and modified Coulomb friction model for friction.
X