Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Crank Angle Estimation with Kalman Filter and Stroke Identification for Electronic Fuel Injection Control of a Scooter Engine

2005-04-11
2005-01-0076
In order to study the noise effect of the crank angle sensor on electronic fuel injection (EFI) control system, a Kalman filter with stroke identification is employed to estimate the crankshaft rotational dynamics. Estimated crank angle and speed are then used for EFI system. A 125 c.c. scooter engine verified by the experimental data is used to design the Kalman filter. A simulation model, which consists of nonlinear engine dynamics, powertrain dynamics, tire dynamics, and pitch-plane motorcycle dynamics, is established in Matlab/Simulink to evaluate the performance of the Kalman filter at various noise conditions.
Technical Paper

Modeling and Control of Hybrid Electric Motorcycles with Variable-Winding Wheel Motors

2005-04-11
2005-01-0283
A Hybrid Electric Motorcycle (HEM) with a variable-winding brushed DC wheel motor is proposed in this paper. When the windings are connected in parallel, the motor has wide speed range suitable for high-speed cruising. When the windings are connected in series, the motor can provide high starting torque and thus reduce the necessary engine size for the proposed HEM. The optimal upper and lower power limits of the engine operating region are obtained from the optimal design theory. A dynamic simulation model is established in Matlab/Simulink to evaluate the performance of the proposed HEM and traditional motorcycles using the ECE40 driving cycle.
Technical Paper

Application of Hardware-In-the-Loop for Developing the Engine Management System

2007-10-30
2007-32-0048
This paper established a hardware-in-the-loop (HIL) system for developing the engine management system (EMS) of a motorcycle, which combines xPC target real-time simulator and PC based controller. An engine model of 125cc four-stroke gasoline engine that included the calculation of cylinder pressure is employed to be a control plant. A proposed control strategy developed with application of this HIL is verified to be superior to the conventional EMS of motorcycles. The proposed controller can send fuel injection and spark ignition control signals every two revolutions accurately via stroke identification method. During the engine running period, perhaps the ignition coil or other electronic equipment will conduct noise that interfere crankshaft tooth signal. Therefore, a Kalman filter is designed to improve the robustness of controller. Under interference, the performance of proposed controller is more satisfied than that without Kalman filter.
Technical Paper

Rapid Prototyping ECU of a SI Engine with Fuel Injection and Ignition Control

2004-03-08
2004-01-0419
This paper presents the application of rapid prototyping electronic control unit (ECU) to fuel injection and ignition control of electronic fuel injection motorcycle engine by using Model-Based environment. As a scene on state of the art, it is famous accepted that the MATLAB Model-Based environment is an efficient development platform for engine management systems (EMS). These come from several benefits: (1) System level design environment, (2) Real-time simulation, and (3) Model to chip technology during rapid prototyping ECU development process. Therefore, this research uses these advantages to study the rapid prototyping controller (RPC) of a SI engine for decreasing time and cost requirements of development process. The target vehicle is a scooter with a four-stroke 125 cc. single cylinder engine.
Technical Paper

An Investigation on Cranking Torque Reduction for Four-Stroke Motorcycle Engine

2013-10-15
2013-32-9060
This study focuses on developing a cranking torque reduction strategy for a motorcycle with idling-stop system. At first, experiments are done to measure the electric current consumption of starting motor which is then converted into cranking torque by the motor torque constant. The experimental results also indicate that the piston position, after the engine is stopped, always remains at the bottom dead center of compression stroke. This will further increase the cranking torque for the next engine start due to static friction and compression pressure. This paper, therefore, proposes to retrofit the original generator of motorcycle as a motor/generator with the same operation power. The motor/generator could be worked in motor mode to assist the starting motor to crank the engine, and hence the instantaneous power provided by the starting motor could be reduced to extend its life time.
Technical Paper

Misfire Diagnostic Strategy for Motorcycles

2013-10-15
2013-32-9058
The on-board diagnostic (OBD) technologies for automobiles have been well-developed; however, it could not be carried out on motorcycles directly since the operation conditions are quite different between automobiles and motorcycles. In this research, we propose a misfire detection strategy for motorcycles based on the characteristics of crankshaft rotational dynamics. At first, experiments were done on a 125cc motorcycle to investigate the variation of instantaneous crankshaft rotational speed in power stroke while the misfire events are injected at different engine operation conditions. In order to generate misfire events for the engine, a misfire generator is established for providing specific misfire rates. If a misfire takes place at higher engine speed, the instantaneous rotational speed will decline continuously during power stroke due to higher friction losses, which leads to the reduction of average crankshaft rotational speed as well.
Technical Paper

Development of Three-Way Catalytic Converter Diagnostic Strategy

2015-11-17
2015-32-0783
In this paper, the off-line analysis method is applied to develop three-way catalytic converter (TWC) diagnostic strategy including oxygen sensor (O2 sensor) diagnostic strategy with common narrow band oxygen sensor (EGO sensor) in Matlab/Simulink software. Moreover, Mototron ECU (Engine Control Unit) is used for monitoring catalyst deterioration. However, aged catalyst is difficult to possess so the different catalytic conversion efficiency (CCE) is simulated by using exhaust by-pass valve. The CEC (China Engine Corporation) 1L V2, four stroke, water-cooled engine is selected as target engine to conduct engine dynamometer test. After making sure O2 sensor operates normally, the catalyst diagnostic strategy test is executed. The experimental result shows that the catalyst deterioration accurately can be detected when the failure phenomenon takes place.
X