Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Application of Adaptive Idle Speed Control on V2 Engine

2015-11-17
2015-32-0788
This paper develops an adaptive idle speed control strategy for a V2, 1000 cc four-stroke, water-cooled, port injection SI engine. In order to verify the proposed strategy, the non-dimensional engine model including charging and torque dynamics is established in Matlab/Simulink software based on previously experimental verification. The integration of dynamics above will be a multi-input-single-output (MISO) system, which inputs are throttle angle and spark advance angle, and the output is engine speed. The proposed adaptive controller is developed on the model-based structure. The system parameters are updated by recursive least square (RLS) method so the system is able to represent the actual operation. The updated system parameters adjust control gain by derivation of closed-loop gain and pole placement.
Technical Paper

A Study of the Characteristics of Fuel-Film Dynamics for Four-Stroke Small-Scale Spark-Ignition Engines

2009-04-20
2009-01-0591
The phenomenon of fuel-film dynamics for four-stroke small-scale spark-ignition engines is investigated in this paper. A first-order fuel-film model, so-called tau-x model, is used to represent the fuel dynamics. The parameters of fuel-film model, which consists of the portion of fuel that deposited on the manifold wall and the time constant of the fuel evaporation process, are identified using the recursive least squared technique. Performances of the proposed algorithm are evaluated using a nonlinear engine model in Matlab/Simulink. The preliminary simulation results show that the proposed algorithm can accurately be used to identify the parameters of fuel-film model. The experimental data are then utilized to study the characteristics of fuel-film dynamics, and show that the fuel-film dynamics is significantly affected by engine speed, throttle opening, injection timing, and intake temperature.
Technical Paper

Development of Engine Model Using Modulization Method for EMS Verification through MIL and HIL

2014-04-01
2014-01-1097
This paper develops an engine model for the model-in-the-loop (MIL) and hardware-in-the-loop (HIL) application to shorten the time duration and reduce the costs of developing and verifying the engine management system (EMS). The target engine is a 1.0L V-type two cylinder water-cooled spark-ignition engine. The engine model is developed using a so-called modulization method, which includes to: (1) separate the sub-models according to the different physical phenomena; (2) collect the sub-models to establish a library; (3) execute the component modules based on a pre-determined sequence by a more flexible way. The engine model is then applied in MIL structure for testing and verifying the control strategies in the developed EMS. After all strategies are verified, the HIL structure is constructed by a hardware controller and a virtual engine in the xPC target. The execution time-step of engine model is analyzed to keep enough accuracy and numeric stability for real-time simulation.
Technical Paper

Improving the Performance of a Small Spark-Ignition Engine by Using Oxygen-Enriched Intake Air

2007-10-30
2007-32-0004
In order to improve the performance of a small gasoline engine, a part of oxygen is added to the intake air when the engine is operated at wide open throttle. The combustion process can be enhanced by using an oxidant that contains a higher proportion of oxygen than that in normal air. This paper studies the combustion characteristics and engine performance of such engine. Engine testing is performed on a 50 cc four-stroke spark-ignition engine with the oxygen concentration of intake air ranging from 21% to 25% by volume. The engine torque is increased with increasing oxygen concentration. The HC and CO emissions are decreased with oxygen enrichment, but the NOx emission is increased.
X