Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Study on Engine Management System Using In-cylinder Pressure Sensor Integrated with Spark Plug

2004-03-08
2004-01-0519
There has been strong public demand for reduced hazardous exhaust gas emissions and improved fuel economy for automobile engines. In recent years, a number of innovative solutions that lead to a reduction in fuel consumption rate have been developed, including in-cylinder direct injection and lean burn combustion technologies, as well as an engine utilizing a large volume of exhaust gas recirculation (EGR). Furthermore, a homogeneous charge compression ignition (HCCI) engine is under development for actual application. However, one of the issues common to these technologies is less stable combustion, which causes difficulty in engine management. Additionally, it is now mandatory to provide an onboard diagnosis (OBD) system. This requires manufacturers to develop a technology that allows onboard monitoring and control of the combustion state. This paper reports on an innovative combustion diagnostic method using an in-cylinder pressure sensor.
Technical Paper

Study on Combustion Monitoring System for Formula One Engines Using Ionic Current Measurement

2004-06-08
2004-01-1921
Formula One engines, which are the pursuit of the ultimate in performance, tend to be comparatively vulnerable to durability issues. These engines sometimes run under a state of unstable combustion as compensation for improved fuel economy. To cope with these issues, there have been strong demands in the racing field for a technology that will allow constant monitoring and prompt action to be carried out on system malfunctions and failures, as well as unstable combustion. The research program described in this paper deals with an onboard technology for monitoring combustion under all the operational conditions using ionic current measurement. The technology will possibly be applied to engine management and car-to-pit communications via telemetering. The scope of the control it offers includes; detection of misfire and hesitation, detection and management of detonation, and management of lean-burn combustion.
X