Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Fuel Consumption Improvement and Operation Range Expansion in HCCI by Direct Water Injection

2002-03-04
2002-01-0105
HCCI (Homogeneous Charge Compression Ignition) combustion results in very low NOx emissions, however, it is not without problems. One of them is that the heavy load operation range is limited by knock, due to an exceptionally high heat release rate. Knock increases the heat loss to the cylinder walls and piston, reducing thermal efficiency. To help solve these problems, direct (in-cylinder) water injection has been suggested to lower the local temperatures that seem to cause knock in HCCI. Water injection was adapted in an HCCI engine fueled with DME and Propane. Results showed that the indicated thermal efficiency was improved by about 2% (λ = 3.0, NA), and the operation range was expanded from 460kPa to 700kPa (NA) maintaining a low NOx level.
Technical Paper

Controlling Combustion and Exhaust Emissions in a Direct-Injection Diesel Engine Dual-Fueled with Natural Gas

1995-10-01
952436
An experimental study was conducted to determine combustion and exhaust emissions characteristics in an automotive direct-injection diesel engine dual-fueled with natural gas with the objective of improving exhaust emissions and thermal efficiency. Dual-fuel operation can yield a high thermal efficiency almost comparable to the diesel operation and very low smoke at higher loads. However, NOx cannot be reduced by dual-fueling. On the other hand, at lower loads, a dual-fueled engine inevitably suffers from lower thermal efficiency and higher unburned fuel. To resolve these problems, the effects of exhaust gas recirculation (EGR) were investigated. The results show that in dual-fuel operation, hot EGR can improve thermal efficiency and reduce unburned fuel emission at lower loads, While cooled EGR can considerably reduce NOx at higher loads. A Pt oxidation catalyst can be used for additional reduction in unburned fuel emitted due to dual-fueling.
X