Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Numerical Simulations of Mixture Formation in Combustion Chambers of Lean-Burn Natural Gas Engines Incorporating a Sub-Chamber

2017-10-08
2017-01-2280
The aim of this study is to clarify the mixture formation in the combustion chamber of our developed natural gas engine incorporating the sub-chamber injection system, in which natural gas is directly injected into a combustion sub-chamber in order to completely separate rich mixture in the sub-chamber, suitable for ignition, from ultra-lean mixture in the main chamber. Mixture distributions in chambers with and without sub-chamber were numerically simulated at a variety of operating conditions. The commercial software of Fluent 16.0 was used to conduct simulations based on Reynolds averaged Navier-Stokes equations in an axial 2 dimensional numerical domain considering movements of piston. Non-reactive flow in the combustion chamber was simulated before the ignition timing at an engine speed of 2000 rpm. The turbulence model employed here is standard k-ε model. Air-fuel ratio is set with a lean condition of 30.
Technical Paper

Effect of Improving Spray Development and Evaporation on Emissions from DI Diesel Engines Fueled with Straight Rape-Seed Oil

2015-09-01
2015-01-1925
This study tries to reduce SOF (Soluble Organic Fraction) emissions at low load by improving spray characteristics of rape-seed oil and avoiding wall-impingement of the spray to the piston wall in a real direct-injection diesel engine applying rape-seed oil directly. High swirling air motion and squish flow caused by the piston configurations are taken as measures. Further, flat bottom shape of the piston is applied. Results show that emissions can be improved by the support of air motions. High swirl with toroidal piston is effective to reduce SOF emissions. Re-entrant piston with flat bottom shape offers the best emission performance. Raising gas temperature is also effective to reduce SOF emissions at low load.
Journal Article

Effects of Sub-Chamber Configuration on Heat Release Rate in a Constant Volume Chamber simulating Lean-burn Natural Gas Engines

2020-01-24
2019-32-0551
Sub-chamber is a useful device with regard to sustaining stable operation of compressed natural gas (CNG) engines under lean burn conditions. In our previous studies, we applied a sub-chamber injection system to CNG engines, in which a single injector and a spark plug are mounted in a small sub-chamber. The aim of this study is to investigate the effect of the sub-chamber configuration on heat release in the main combustion chamber. 11 types of sub-chamber with different nozzle number, nozzle diameter, and sub-chamber volume were examined under a condition that pressure is 2.3 MPa, and global equivalence ratio is 0.6. When the sub-chamber with smaller nozzles are used, the penetration velocity of burned gas jet increases. In addition, the velocity also increases with an increasing sub-chamber volume. The high-speed penetration of burned gas jet shortens the period of initial flame development.
X