Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Metal Foam Based Aftertreatment System on a Diesel Passenger Car

2008-04-14
2008-01-0619
An alternative metal foam substrate for exhaust aftertreatment applications has been recently presented and characterized. The present paper focuses on the potential of the metal foam technology as an efficient DOC and CDPF substrates on real-world conditions. The target platform is a mid-size passenger car and the methodology includes both modeling and experiments. The experimental testing starts from small-scale reactor characterization of the basic heat/mass transfer properties and chemical kinetics. The results show that the foam structure exhibits excellent mass-transport properties offering possibilities for precious metal and catalyst volume savings for oxidation catalyst applications. These results are also used to calibrate an advanced 2-dimensional model which is able to predict the transient filtration and reaction phenomena in axial and radial flow systems.
Technical Paper

Computational Simulation of the Ceramic Trap Transient Operation

1989-02-01
890403
The paper presents a mathematical model for the simulation of the operational characteristics of the trap during transient operation, based on trap inlet conditions of the exhaust gas and trap history. The model incorporates (a) the formulation of flow conditions in the trap (b) the fundamental mass and energy balance of the system (c) the formulation of the oxidation process through chemical kinetics and (d) the description of mass and heat transfer conditions, including the possibility for calculation of trap operation during both particulate accumulation and regeneration phases. The major output of the model comprises ceramic wall and exhaust gas temperature fields in the trap, as functions of time, as well as the loading level of the trap. The application of the simulation model clarifies the critical importance of the wall temperature at trap outlet and forecasts the failure probability of the ceramic material due to overheating, under specific conditions at trap inlet.
X