Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Sealing and Structural Enhancement System for the Rear Cargo Ramp of a C-130 Aircraft

2007-09-17
2007-01-3883
At flight levels above the ceiling of 10,000 feet, during the operational phase of a sensor deployment system for a C-130 aircraft, it becomes necessary to seal the cargo hold to maintain pressure for the safety and comfort of the crew and operators. In order for the sensor deployment System to have full mission support capabilities for DoD reconnaissance needs, a system must be designed where-by the cargo area may be sealed once the system has been deployed. Currently, with the sensor pod in position, the ramp can be closed to within a few inches of the locked position. The door in this position, for stability during flight, must be locked and structurally supported to maintain the aircrafts design requirements. This presents the first of a series of issues that must be examined for the success of the final design. To seal the remaining area, an expanding “bladder-seal” has been developed.
Technical Paper

Hub Connection Simulation of a Sensor Platform System

2005-10-03
2005-01-3425
In this analysis the structural integrity of the rotational system of a standardized roll-on, roll-off sensor pallet system was authenticated. The driving force behind this analysis was to ensure the structural integrity of the system and to locate the areas with optimization potential. This process will ideally lead to the weight reduction of individual components thereby allowing for the transportation of greater cargo during flight. Scaling down of these excessive areas will also allow for a reduced production cost and an increase in efficiency of the system. The study was comprised of the failure susceptibility of the individual components of the system. The major results include the optimization potential of individual components, as well as strategically rating and categorizing the failure capability of the components.
X