Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Direct Coil Cooling of a High Performance Switched Reluctance Machine (SRM) for EV/HEV Applications

2015-04-14
2015-01-1209
This paper presents the development of a novel direct coil cooling approach which can enable high performance for electric traction motor, and in further significantly reduce motor losses. The proposed approach focuses on bypassing critical thermal resistances in motor by cooling coils directly in stator slots with oil flow. Firstly, the basic configuration and features are shown: sealed stator slots to air gap, pressure reservoirs on both side of the slots and slot channels for oil flow. The key to enhance thermal performance of the motor here is based on introducing fluid guiding structure in the slot channels. Next, heat transfer in the channel with guiding structure is investigated by CFD and compared with bare slot channel without guiding structure. For studying the effectiveness of proposed cooling concept, numerical analysis is conducted to compare it with HEV favored oil impingement cooling.
Technical Paper

Automotive Refrigerant System Induced Evaporator Hoot

2005-05-16
2005-01-2509
The automotive refrigerant systems can occasionally exhibit a transient hoot/whistle type noise under certain operating conditions. High pressure/velocity refrigerant flow through an evaporator core can readily excite the inherent acoustical and/or structural modes, resulting in audible transient tones. This condition if present can be experienced while driving away from a short stop and can last 2 to 10 seconds. The ambient conditions suitable for creating this noise are - moderate/high air-conditioning (A/C) load during days at 85-95° F temperatures with high humidity. Possible noise generating mechanisms have been discussed in earlier publications and our findings during this study indicate that they are excited by the high velocity superheated refrigerant vapor flow through the evaporator core plates. Examples of this transient noise and its spectral characteristics are presented to characterize this refrigerant system induced issue.
Technical Paper

Prediction of Automotive Air-Handling System Flow Noise Sound Quality Using Sub-System Measurements

2015-06-15
2015-01-2273
This paper presents the methodology of predicting vehicle level automotive air-handling system air-rush noise sound quality (SQ) using the sub-system level measurement. Measurement setup in both vehicle level and sub-system levels are described. To assess the air-rush noise SQ, both 1/3 octave band sound pressure level (SPL) and overall Zwicker's loudness are used. The “Sound Quality Correlation Functions (SQCF)” between sub-system level and vehicle level are developed for the specified climate control modes and vehicle segment defined by J.D. Power & Associates, while the Zwicker's loudness is calculated using the un-weighted predicted 1/3 octave band SPL. The predicting models are demonstrated in very good agreement with the measured data. The methodology is applied to the development of sub-system SQ requirement for upfront delivery of the optimum design to meet global customer satisfaction
X