Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

An Investigation of Multiple-Injection Strategy in a Diesel PCCI Combustion Engine

2010-04-12
2010-01-1134
Multiple-injection strategy for Premixed Charge Compression Ignition (PCCI) combustion was investigated in a four-valve, direct-injection diesel engine by CFD simulation using KIVA-3V code [ 1 ] coupled with detailed chemistry. The effects of fuel splitting proportion, injection timing, included spray angles, injecting velocity, and the combined effects of injection parameters and EGR rate and boost pressure were examined. The mixing process and formations of soot emission and NO x were investigated as the main concern of the research. The results show that the fuel splitting proportion and the injection timing significantly impacted the combustion and emissions due to the considerable changes of the mixing process and fuel distribution in cylinder. The soot emission and unburned HC (UHC) were affected by included spray angles since the massive influences of the fuel distribution resulted from the change in spray targeting point on piston bowl.
Technical Paper

Analysis of Tumble and Swirl Motions in a Four-Valve SI Engine

2001-09-24
2001-01-3555
Tumble and swirl motions in the cylinder of a four-valve SI engine with production type cylinder head were investigated using a cross-correlation digital Particle Image Velocimetry (PIV). Tumble motion was measured on the vertical symmetric plane of the combustion chamber. Swirl motion was measured on a plane parallel to the piston crown with one of intake ports blocked. Large-scale flow behaviours and their cyclic variations were analysed from the measured two-dimensional velocity data. Results show that swirl motion is generated at the end of the intake stroke and persists to the end of the compression stroke. Tumble vortex is produced in the early stage of the compression stroke and distorted in the late stage of the stroke. The cyclic variation of swirl motion is noticeable. The cyclic variation in tumble dominated flow field is much greater.
Technical Paper

CFD Evaluation of Effects of Split Injection on Combustion and Emissions in a DI Diesel Engine

2011-04-12
2011-01-0822
Effects of split injection with different EGR rate on combustion process and pollutant emissions in a DI diesel engine have been evaluated with CFD modeling. The model was validated with experimental data achieved from a Caterpillar 3401 DI diesel engine and 3D CFD simulation was carried out from intake valve closing (IVC) to exhaust valve opening (EVO). Totally 12 different injection strategies for which two injection pulses with different fuel amount for each pulse (up to 30% for the second pulse) and different separation between two pulses (up to 30° CA) were evaluated. Results show that adequate injection separation and enough fuel amount of the second pulse could form a separate 2nd stage of heat release which could reduce the peak combustion temperature and improve the oxidation of soot formed in the first heat release stage.
Technical Paper

Analysis of Homogeneity Factor for Diesel PCCI Combustion Control

2011-08-30
2011-01-1832
Owing to the potentials for low NOx and soot emissions, diesel PCCI combustion has been widely studied over last 10 years. However, its control is still the main barrier to constrain it to be applied on production engines. As there are a number of variables which affect the mixing and combustion process, it is difficult to develop control strategies with adequate functions but simple control order for implementing them. In the current research, a reformed Homogeneity Factor (HF) of in-cylinder charge has been explored as a control medium for simplifying the control model structure. Based on multi-pulse injection, the effects of operating parameters on the Homogeneity Factor and the relationship between Homogeneity Factor and mixing, combustion processes, emissions were investigated in a four-valve, direct-injection diesel engine by CFD simulation using KIVA-3V code coupled with detailed chemistry.
Technical Paper

Investigation of Pilot and Multiple Injection Parameters on Mixture Formation and Combustion Characteristics in a Heavy Duty DI-Diesel Engine

2012-04-16
2012-01-0142
The mechanism of NOx and soot reduction using different pilot and multiple injection strategies has been computationally studied in a heavy duty DI Diesel engine. A designed set of advanced injection schemes with various variables and exhaust gas recirculation rate (up to 10%) have been analyzed. The CFD model was firstly calibrated against experimental data for a part load operation at 1600 rpm. The computational models used were found to predict the correct trends obtained in the experiment. The study demonstrated the potential and explained the mechanism of the combination of EGR and multiple injection to reduce both soot and NOx emissions together with improved fuel economy.
X