Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Journal Article

Using Designing for Human Variability to optimize Aircraft eat Layout

2009-06-09
2009-01-2310
Integrating the seemingly divergent objectives of aircraft seat configuration is a difficult task. Aircraft manufacturers look to design seats to maximize customer satisfaction and in-flight safety, but these objectives can conflict with the profit motive of airline companies. In order to boost revenue by increasing the number of passengers per aircraft, airline companies may increase seat height and decrease seat pitch. This results in disaccommodation of a greater percentage of the passenger population and is a reason for rising customer dissatisfaction. This paper describes an effort to bridge this gap by incorporating digital human models, layout optimization, and a profit-maximizing constraint into the aircraft seat design problem. A simplified aircraft seat design experiment is conceptualized and its results are extrapolated to an airline passenger population.
Journal Article

Modeling of Li-ion Battery Performance in Hybrid Electric Vehicles

2009-04-20
2009-01-1388
Considerable improvements can be obtained in battery performance for hybrid electric vehicles (HEVs) by employing an electrochemistry-transport model based on a multi-physics modeling framework and ultrafast numerical algorithms. One important advantage of this approach over the lumped equivalent circuit (or look-up table) approach is the ability of the former to adapt to changes in design and control. In this work, we present mathematical and numerical details of our approach, and demonstrate the robustness of this battery model in simulation of short-pulse charge/discharge characteristic of HEV driving cycles under room and low temperatures.
Journal Article

Transported Probability Density Function (tPDF) Modeling for Direct-Injection Internal Combustion Engines

2008-04-14
2008-01-0969
Ongoing efforts in applying a “high-end” turbulent combustion model (a transported probability density function - tPDF - method) to direct-injection internal combustion engines are discussed. New numerical algorithm and physical modeling issues arise compared to more conventional modeling approaches. These include coupling between Eulerian finite-volume methods and Lagrangian Monte Carlo particle methods, liquid fuel spray/tPDF coupling, and heat transfer. Sensitivity studies are performed and quantitative comparisons are made between model results and experimental measurements in a diesel/PCCI engine. Marked differences are found between tPDF results that account explicitly for turbulence/chemistry interactions (TCI) and results obtained using models that do not account for TCI. Computed pressure and heat release profiles agree well with experimental measurements and respond correctly to variations in engine operating conditions.
Journal Article

Design, Development and Validation of the 2013 Penn State University E85 Series Plug-In Hybrid Vehicle

2012-09-10
2012-01-1773
The Pennsylvania State University Advanced Vehicle Team (PSU AVT) is one of the fifteen (15) participating teams at the EcoCAR 2 “Plugging In to the Future” challenge. The team has worked in the design, development and validation of converting a 2013 Chevrolet Malibu, into an advanced technology hybrid vehicle. The PSU AVT has determined that a Plug-In Series Electric Hybrid architecture best meets the design goals of the EcoCAR 2 competition. The vehicle will utilize a front-wheel drivetrain powered by a Magna E-drive; an Auxiliary Power Unit (APU) based on a naturally aspirated Weber MPE 750 engine, converted for use with E85, coupled to a UQM PowerPhase 75 generator; an Energy Storage System (ESS) based on six A123, 15s3p battery modules; and a Mototron ECM-5554-112-0904 controller as the Master Vehicle Controller (MVC).
Journal Article

Multi-Physics Numerical Analysis of PEMFC for Automobile Application

2013-04-08
2013-01-0476
Polymer Electrolyte Membrane Fuel Cell (PEMFC) is regarded as a potential alternative clean energy source for automobile applications. Key challenges to the acceptance of PEMFC for automobiles are the cost reduction, improvement in power density for its compactness, and cold-start capability. High current density operation is a promising solution for them. However, high current density operation under normal and sub-zero temperature requires more oxygen flux for the electrochemical reaction in the catalyst layer, and it causes more heat and water flux, resulting in the significant voltage losses. So, the theoretical investigation is very helpful for the fundamental understanding of complex transport phenomena in high current density operation under normal and sub-zero temperature. In this study, the numerical model was established to elucidate the impacts of mass transport phenomena on the cell performance through the numerical validation with experimental and visualization results.
Technical Paper

Planar Laser Light Scattering for the In-Cylinder Study of Soot in a Diesel Engine

1990-10-01
902125
A study has been experimentally conducted in an optically-accessible DI Diesel engine operating on 50/50 mixture of iso-octane and tetradecane to evaluate a planar laser light scattering technique for the in-cylinder study of soot. Two simultaneous images, taken with vertically and horizontally polarized scattered light, were used to determine the polarization ratio, CHH/CW. This magnitude of the polarization ratio was employed to distinguish soot particles from fuel droplets. The spatial and temporal variations of soot during the combustion cycle were investigated with images taken at various crank angles and swirl levels at three different planes in the combustion bowl. For the high swirl case, soot was uniformly distributed in the combustion bowl. For the non-swirl case, however, soot was mainly observed near the wall and at the top plane, and was observed to exist later into the expansion stroke.
Technical Paper

Lower Extremity Injuries in Frontal Crashes: Injuries, Locations, AIS and Contacts

1991-02-01
910811
Frontal crashes (11-1 o'clock) were reviewed from the National Accident Severity Study file (NASS) for years 1980-87. Adult drivers and front right passengers, with lower extremity injuries of the pelvis, thigh, knee, leg or ankle/foot were reviewed. Analysis of age differences, injury contacts, and effectiveness of the 3-point restraint system were studied. Unrestrained drivers have a higher frequency of knee injuries than passengers, fewer leg injuries than passengers and both have the same frequency of ankle/foot injuries. Older unbelted drivers have more injuries to the pelvis, leg, and ankle/foot region than do young drivers. Passengers have more leg injuries. The instrument panel is the major contact for most of the lower extremity injuries. Lap/shoulder belts significantly reduce lower extremity injury frequency.
Technical Paper

Biomechanical Investigation of Airbag-Induced Upper-Extremity Injuries

1997-11-12
973325
The factors that influence airbag-induced upper-extremity injuries sustained by drivers were investigated in this study. Seven unembalmed human cadavers were used in nineteen direct-forearm-interaction static deployments. A single horizontal-tear-seam airbag module and two different inflators were used. Spacing between the instrumented forearm and the airbag module was varied from 10 cm to direct contact in some tests. Forearm-bone instrumentation included triaxial accelerometry, crack detection gages, and film targets. Internal airbag pressure was also measured. The observed injuries were largely transverse, oblique, and wedge fractures of the ulna or radius, or both, similar to those reported in field investigations. Tears of the elbow joint capsule were also found, both with and without fracture of the forearm.
Technical Paper

Development of an Improved Driver Eye Position Model

1998-02-23
980012
SAE Recommended Practice J941 describes the eyellipse, a statistical representation of driver eye locations, that is used to facilitate design decisions regarding vehicle interiors, including the display locations, mirror placement, and headspace requirements. Eye-position data collected recently at University of Michigan Transportation Research Institute (UMTRI) suggest that the SAE J941 practice could be improved. SAE J941 currently uses the SgRP location, seat-track travel (L23), and design seatback angle (L40) as inputs to the eyellipse model. However, UMTRI data show that the characteristics of empirical eyellipses can be predicted more accurately using seat height, steering-wheel position, and seat-track rise. A series of UMTRI studies collected eye-location data from groups of 50 to 120 drivers with statures spanning over 97 percent of the U.S. population. Data were collected in thirty-three vehicles that represent a wide range of vehicle geometry.
Technical Paper

Standing Reach Envelopes Incorporating Anthropometric Variance and Postural Cost

2007-06-12
2007-01-2482
Standing reach envelopes are important tools for the design of industrial and vehicle environments. Previous work in this area has focussed on manikin-based (where a few manikins are used to simulate individuals reaching within the region of interest) and population-based (where data are gathered on many individuals reaching in a constrained environment) approaches. Each of these methods has merits and shortfalls. The current work bridges the manikin- and population-based approaches to assessing reach by creating population models using kinematic simulation techniques driven by anthropometric data. The approach takes into account body dimensions, balance, and postural cost to create continuous models that can be used to assess designs with respect to both maximal and submaximal reaches. Cost is quantified as the degree to which the torso is involved in the reach, since the inclination of the torso is a good measure of lower-back load and may be related to subjective reach difficulty.
Technical Paper

Comparison of Airbag-Aggressivity Predictors in Relation to Forearm Fractures

1998-02-23
980856
Four unembalmed human cadavers were used in eight direct-forearm-airbag-interaction static deployments to assess the relative aggressivity of two different airbag modules. Instrumentation of the forearm bones included triaxial accelerometry, crack detection gages, and film targets. The forearm-fracture predictors, peak and average distal forearm speed (PDFS and ADFS), were evaluated and compared to the incidence of transverse, oblique, and wedge fractures of the radius and ulna. Internal-airbag pressure and axial column loads were also measured. The results of this study support the use of PDFS or ADFS for the prediction of airbag-induced upper-extremity fractures. The results also suggest that there is no direct relationship between internal-airbag pressure and forearm fracture. The less-aggressive system (LAS) examined in this study produced half the number of forearm fracture as the more-aggressive system (MAS), yet exhibited a more aggressive internal-pressure performance.
Technical Paper

A Spark Ignited Engine and Flow Reactor Study of the Effect of an Organic Fuel Additive on Hydrocarbon and Nox Emissions

1998-05-04
981455
An experimental study was conducted to determine if an organic fuel additive could reduce engine out hydrocarbon and NOx emissions. A production four cylinder spark ignited engine with throttle body fuel injection was used for the study. A full boiling range base fuel, an additized base fuel, a base fuel with methyl tertiary butyl ether (MTBE) and a base fuel with MTBE and additive were used in the engine tests. Additive concentration was 1/2% by mass. Hydrocarbon and NOx measurements were recorded for 11 load/speed conditions. Hydrocarbon speciation data was taken at two of these conditions. The data from the experiments was analyzed in a pair-wise fashion for the fuels with and without the additive to determine whether statistically significant changes occurred.
Technical Paper

Thermodynamics and Its Applications through First-Principles Calculations and CALPHAD Modeling

2007-04-16
2007-01-1024
Thermodynamics is the key component of materials science and engineering. The manifestation of thermodynamics is typically represented by phase diagrams, traditionally for binary and occasionally ternary systems. Consequently, the applications of thermodynamics have been rather limited in multi-component engineering materials. Computational thermodynamics, developed in the last few decades, has released the power of thermodynamics. In this presentation, fundamental thermodynamics is reviewed, followed by an introduction of computational thermodynamics in terms of first-principles calculations and thermodynamic modeling, and its application to Mg alloys.
Technical Paper

Modeling Vehicle Ingress and Egress Using the Human Motion Simulation Framework

2008-06-17
2008-01-1896
The ease of getting into and out of passenger cars and light trucks is a critical component of customer acceptance and product differentiation. In commercial vehicles, the health and safety of drivers is affected by the design of the steps and handholds they use to get into and out of the cab. Ingress/egress assessment appears to represent a substantial application opportunity for digital human models. The complexity of the design space and the range of possible biomechanical and subjective measures of interest mean that developing useful empirical models is difficult, requiring large-scale subject testing with physical mockups. Yet, ingress and egress motions are complex and strongly affected by the geometric constraints and driver attributes, posing substantial challenges in creating meaningful simulations using figure models.
Technical Paper

Optimal Product Sizing through Digital Human Models

2008-06-17
2008-01-1921
Designing for human variability (DfHV) requires efficient allocation of sizing and adjustability. This can preserve product performance while reducing some measures of cost. For example, specifying only as much adjustability as necessary for a desired level of accommodation leads to devices which are better suited to their users and more cost efficient. Similarly, when multiple sizes of an adjustable artifact are to be produced, specifying only as many sizes as are necessary, with an appropriate amount of adjustability per size, leads to a set of products that cost less, require fewer unique parts, facilitate maintenance standardization, and ease inventory control. An alternative to the standard procedure of evenly dividing size ranges is considered wherein an equal degree of accommodation per size is also presented. A simple example related to exercise bicycle seat height is discussed.
Technical Paper

Non-Intrusive Driver Drowsiness Monitoring Via Artificial Neural Networks

2008-04-14
2008-01-0187
In this paper, a completely non-intrusive method of monitoring driver drowsiness is described. Because of their abilities to learn behavior and represent very complex relationships, artificial neural networks are the basis of the method presented. Four artificial neural networks are designed based on the hypothesis that the time derivative of force (jerk) exerted by the driver at the steering wheel and accelerator pedal can be used to discern levels of alertness. The artificial neural networks are trained to replicate non-drowsy input, and then tested with unseen data. Data sets that are similar to the training sets will pass through the network with little change, and sets that are different will be changed considerably by the network. Thus, the further the driver's jerk profile deviates from the non-drowsy jerk profile, the greater the error between the input and output of the network will be.
Technical Paper

Injection Molding of Metals and Ceramics

1998-09-29
982417
Powder injection molding (PIM) combines the processability of plastics and the superior material properties of metals and ceramics to form high performance components. The process comprises of several stages. Metal or ceramic powder and organic materials are combined into a homogeneous feedstock which is then injection molded into a desired shape. The organic constituent is then removed from the object and sintering is done to form a rigid structure of controllable density. The important benefits afforded by PIM include near net-shape production of complex geometries in the context of low cost and rapid fabrication at high production volumes.
Technical Paper

A Multi-Modality Image Data Collection Protocol for Full Body Finite Element Model Development

2009-06-09
2009-01-2261
This study outlines a protocol for image data collection acquired from human volunteers. The data set will serve as the foundation of a consolidated effort to develop the next generation full-body Finite Element Analysis (FEA) models for injury prediction and prevention. The geometry of these models will be based off the anatomy of four individuals meeting extensive prescreening requirements and representing the 5th and 50th percentile female, and the 50th and 95th percentile male. Target values for anthropometry are determined by literature sources. Because of the relative strengths of various modalities commonly in use today in the clinical and engineering worlds, a multi-modality approach is outlined. This approach involves the use of Computed Tomography (CT), upright and closed-bore Magnetic Resonance Imaging (MRI), and external anthropometric measurements.
Technical Paper

Comprehension Testing of Active Safety Symbols

2004-03-08
2004-01-0450
This paper describes an effort to develop a valid and reliable process for comprehension testing of candidate automotive symbols and to conduct comprehension testing on a set of new symbols being considered for in-vehicle active safety systems. The comprehension testing process was developed though a multi-year effort, supported by Society of Automotive Engineering (SAE) and other organizations, aimed at generating a test methodology that would: yield high-quality comprehension data for new automotive symbols, provide clear and specific guidance back to symbol developers based on the test results, and could be adopted and performed internationally to support international standards efforts. Seventeen (17) candidate symbols were evaluated for three classes of in-vehicle active safety systems: forward collision warning (4 symbols), side collision warning (6 symbols), and lane departure warning (7 symbols).
X