Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Battery Parameter Estimation from Recorded Fleet Data

2016-10-17
2016-01-2360
Existing battery parameter model structures are evaluated by estimating model parameters on real driving data applying standard system identification methods. Models are then evaluated on the test data in terms of goodness of fit and RMSE in voltage predictions. This is different from previous battery model evaluations where a common approach is to train parameters using standardized tests, e.g. hybrid pulse-power capability (HPPC), with predetermined charge and discharge sequences. Equivalent linear circuit models of different complexity were tested and evaluated in order to identify parameter dependencies at different state of charge levels and temperatures. Models are then used to create voltage output given a current, state of charge and temperature. The average accuracy of modelling the DC bus voltage provides a model goodness of fit average higher than 90% for a single RC circuit model.
Technical Paper

Comparing Dynamic Programming Optimal Control Strategies for a Series Hybrid Drivetrain

2017-10-08
2017-01-2457
A two-state forward dynamic programming algorithm is evaluated in a series hybrid drive-train application with the objective to minimize fuel consumption when look-ahead information is available. The states in the new method are battery state-of-charge and engine speed. The new method is compared to one-state dynamic programming optimization methods where the requested generator power is found such that the fuel consumption is minimized and engine speed is given by the optimum power-speed efficiency line. The other method compared is to run the engine at a given operating point where the system efficiency is highest, finding the combination of engine run requests over the drive-cycle that minimizes the fuel consumption. The work has included the engine torque and generator power as control signals and is evaluated in a full vehicle-simulation model based on the Volvo Car Corporation VSIM tool.
Technical Paper

A Structure and Calibration Method for Data-Driven Modeling of NOX and Soot Emissions from a Diesel Engine

2012-04-16
2012-01-0355
The development and implementation of a new structure for data-driven models for NOX and soot emissions is described. The model structure is a linear regression model, where physically relevant input signals are used as regressors, and all the regression parameters are defined as grid-maps in the engine speed/injected fuel domain. The method of using grid-maps in the engine speed/injected fuel domain for all the regression parameters enables the models to be valid for changes in physical parameters that affect the emissions, without having to include these parameters as input signals to the models. This is possible for parameters that are dependent only on the engine speed and the amount of injected fuel. This means that models can handle changes for different parameters in the complete working range of the engine, without having to include all signals that actually effect the emissions into the models.
X