Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

In-flight Icing Hazard Verification with NASA's Icing Remote Sensing System for Development of a NEXRAD Icing Hazard Level Algorithm

2011-06-13
2011-38-0030
From November 2010 until May of 2011, NASA's Icing Remote Sensing System was positioned at Platteville, Colorado between the National Science Foundation's S-Pol radar and Colorado State University's CHILL radar (collectively known as FRONT, or ‘Front Range Observational Network Testbed’). This location was also underneath the flight-path of aircraft arriving and departing from Denver's International Airport, which allowed for comparison to pilot reports of in-flight icing. This work outlines how the NASA Icing Remote Sensing System's derived liquid water content and in-flight icing hazard profiles can be used to provide in-flight icing verification and validation during icing and non-icing scenarios with the purpose of comparing these times to profiles of polarized moment data from the two nearby research radars.
Technical Paper

Comparative Performance of a Compression-Molded I-Section Bumper Beam with Integrated Mounting Stays vs. Other GMT Bumper Designs

1998-02-23
980111
The C-section bumper design has become a de-facto engineering standard for the majority of thermoplastic bumpers on production vehicles. C-section beams can provide satisfactory performance in a wide range of crash scenarios and can be produced using a variety of plastics processing methods. However, owing to changes in bumper design requirements and advances in composites technology, recently many OEMs have begun considering use of I-section geometry, which has the potential to provide significant weight and packaging size savings while providing equivalent performance at a lower cost. This report will compare the performance of C- and I-section designs using a variety of different compression-moldable, glass-mat thermoplastic (GMT) composite materials. A software package will be introduced that makes it possible to evaluate an I-beam design for a given set of packaging requirements in a very short period of time.
Technical Paper

I-Section Bumper with Improved Impact Performance from New Mineral-Filled Glass Mat Thermoplastic (GMT) Composite

1999-03-01
1999-01-1014
The I-Section bumper design has evolved over the past 10 years into a lightweight, low cost, high performance alternative to traditional bumper beams. Initial I-Section Bumpers were developed with 40% Chopped fiberglass GMT. Through the development of lower cost Mineral-Filled/Chopped fiberglass GMT, improved static load and dynamic impact performance results have been achieved in I-Section Bumper Designs.
X