Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Automotive Aerodynamic Design Exploration Employing New Optimization Methodology Based on CFD

2010-04-12
2010-01-0513
Optimization methodology employing CFD for the aerodynamic design of automotive car styling is presented. The optimization process consists of three stages: Design of Experiments (DOE), Response Surface Modeling (RSM), and optimization algorithm execution. RSM requires a number of CFD calculations in order to ensure its accuracy, making it difficult to apply the RSM to aerodynamic design optimization. In order to resolve this issue, Adaptive Multi Stage RSM (AMS-RSM) was conceived. This method provided the response surface its required accuracy and robustness. The optimization process was realized by constructing an automatic optimization system consisting of software.
Journal Article

Basic Study on Thermal Runaway Propagation through Lithium Ion Cells

2015-04-14
2015-01-1379
Lithium-ion cells are being used in an increasing number of electric and hybrid vehicles. Both of these vehicle types contain many cells. Despite various safety measures, however, there are still reports of accidents involving abnormal heat, smoke, and fire caused by thermal runaway in the cells. If thermal runaway in one cell triggers that of another and thus causes thermal runaway propagation, this can lead to rupture of the battery pack, car fire, or other serious accidents. This study is aimed to ensure the safety of vehicles with lithium-ion cells by clarifying such accident risks, and so we investigated the process of thermal runaway propagation. In the experiment, we created a battery module made of seven laminate-type cells tightly stacked one on another. Then, we induced thermal runaway in one of the cells, measured the surface temperatures of the cells, and collected video data as the process developed. As a result, all of the seven cells underwent thermal runaway.
Journal Article

Features of Fatal Pedestrian Injuries in Vehicle-to-Pedestrian Accidents in Japan

2013-04-08
2013-01-0777
The number of traffic deaths in Japan was 4,612 in 2011. Looking at the road accident fatalities, it revealed that pedestrians accounted for the highest number in 2011 (1,686, 36.6%). To develop safety countermeasures to decrease the severity of injuries and to reduce the number of deaths in traffic accidents, the detailed characteristics of pedestrian injury in vehicle-to-pedestrian crashes are necessary. The purpose of this study is to understand the scenarios of vehicle accidents in which pedestrians suffer fatal injuries. In the present study, we investigated the characteristics of pedestrian injuries in fatal crashes from accident analyses and compared them to head injury severity levels in impact tests against a road pavement and vehicle contact surfaces.
Technical Paper

JNCAP: Developing overall rating protocol

2001-06-04
2001-06-0156
The Japan New Car Assessment Program (JNCAP) was launched in 1995 in order to improve car safety performance. According to this program, installation conditions of safety devices and the results for braking performance and full- frontal crash test are published every year. The side impact test was introduced in 1999. In 2000, the offset frontal crash test was also introduced. From the viewpoint of such a diversification of the crash tests, an overall assessment method for the safety of cars which reflects road accidents has been demanded. In this study, we have examined a new overall assessment method capable of reflecting the traffic accident situation in Japan using methods employed or planned by USA-NCAP, Euro-NCAP, TUB-NCAP and others as references. As the basic concept, JNCAP conducts three types of crash tests including the full-frontal crash test, offset frontal crash test, and side impact test to assess the dummy injury parameters.
Technical Paper

Aerodynamic Performance Evaluation System at the Early Concept Stage of Automotive Styling Development Based on CFD

2016-04-05
2016-01-1584
An aerodynamic styling evaluation system employed at an early automotive development stage was constructed. The system based on CFD consists of exterior model morphing, computational mesh generation, flow calculation and result analysis, and the process is automatically and successively executed by process automation software. Response surfaces and a parallel coordinates chart output by the system allow users to find a well-balanced exterior form, in terms of aerodynamics and exterior styling, in a wide design space which are often arduous to be obtained by a conventional CAE manner and scale model wind tunnel testing. The system was designed so that 5-parameter study is completed within approximately two days, and consequently, has been widely applied to actual exterior styling development. An application for a hatchback vehicle is also introduced as an actual example.
Technical Paper

Risks of Pedestrian Serious Injuries and Fatalities associated with Impact Velocities of Cars in Car-versus-pedestrian Accidents in Japan

2013-11-11
2013-22-0008
The first purpose of this study is to clarify the relation between the car impact velocity and pedestrian injury severity or mortality risk. We investigated the frequency of serious injuries and fatalities of pedestrians using vehicle-pedestrian accident data from the database of the Institute for Traffic Accident Research and Data Analysis (ITARDA) in Japan. The vehicle types considered are sedans, minivans, and box vans (ordinary automobiles) and light passenger cars and light cargo vans (light automobiles). The results revealed that a 10-km/h reduction in impact velocity could mitigate severe pedestrian injuries in cases involving impact velocities of 40 km/h or more for the five vehicle types analyzed. Specifically, if the impact velocity was 30 km/h or less, the frequency of serious injuries was less than 27% and the frequency of fatalities was less than 5% for the five vehicle types.
Technical Paper

Multi-Objective Optimization of Control Parameters for Hybrid and Electric Vehicles Using 1D CAE Model

2020-04-14
2020-01-0247
Since the operation of the powertrain system and the engine speed and torque are determined in the ECU in hybrid vehicles, control parameters in these vehicles are more sensitive to a variety of performance factors than those employed in conventional vehicles. The three performance factors acceleration performance, NVH and fuel consumption in particular are in a tradeoff relationship, the calibration of control parameters in order to satisfy these performance targets entail considerable development costs. Given this, it is possible to increase the efficiency of hybrid vehicle development by determining Pareto design solutions for the three performance factors via multi-objective optimization using CAE, and selecting target performance and control parameters based on these Pareto design solutions.
X