Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Improvement of Atomization Characteristics of a Micro Nozzle Array Type Gasoline Injector

2009-12-13
2009-28-0041
Atomization characteristics of an ultrasonic fuel injector using a micro nozzle array were improved by change of horn geometries. Micro nozzles whose exit diameter d = 3 µm are mounted on a thin metal film, and the number of micro nozzles was varied from 2.0 × 104 to 1.2 × 105. Gasoline is periodically pushed out from the micro nozzles at frequencies from 62 to 65 kHz. A disk type PZT (Lead zirconium titanate) is used as an ultrasonic oscillator, and the oscillation is amplified by an axi-symmetric step-type horn. The oscillation amplitude is proportional to the area ratio of the horn. The number of micro nozzles increases with the increase in the small end diameter of the horn, while the oscillation amplitude decreases at the same time. In order to increase the fuel flow rate, the horn small end diameter Ds was varied from 10.5 to 25 mm, while the large end diameter is fixed at 30 mm.
Technical Paper

Toyota Air-Mix Type Two-Hole Injector for 4-Valve Engines

1991-10-01
912351
An air-mix type 2-hole injector has been developed for 4-valve engines. In order to finely atomize the fuel whilst maintaining the separation of the twin sprays that assures minimal wetting of the partition between the siamese ports, the location of the air inlet passages was optimized and studies were conducted to determine the appropriate geometry of the fuel separation portion of the adapter. High speed photographs verify that the finalized adapter realizes centralized fuel flow through the splayed conduits so that the maximum air entrainment is achieved. This new injector both improves transient response and reduces HC emissions under all temperature conditions. It further enables injection timing to be retarded to the intake stroke at the same low HC level.
Technical Paper

Analysis of Fuel Flow and Spray Atomization in Slit Nozzle for Direct Injection SI Gasoline Engines

2006-04-03
2006-01-1000
The slit nozzle in the fuel injection valve for a direct injection spark ignition gasoline engine forms a thin, fan-shaped spray. The fan-shaped spray is characterized by high dispersion, comparatively high penetration, and fine atomization. This enables it to form a stable air-fuel mixture. However, further improvement of engine performance requires that the spray characteristics (particularly the level of atomization) be improved. Since the spray characteristics are strongly influenced by the fuel flow within the nozzle, it was clarified this effect by visual analyses of the fuel flow inside the nozzle using enlarged acrylic slit nozzles. The results demonstrated that vortices that are formed within the nozzle sac are continuously propagated in a periodic manner within the sac and that they influence the streamline of fuel flow from the sac to the slit.
Technical Paper

Slit Nozzle Injector for A New Concept of Direct Injection SI Gasoline Engine

2000-06-19
2000-01-1902
A direct injection spark ignition (DISI) gasoline engine with a new stratified charge combustion concept has been launched on the Japanese domestic market. This new concept consists of two components. First, a thin fan-shaped spray from a slit nozzle enables wide spray dispersion, moderate spray penetration and a fine atomization. Second, a shell-shaped piston cavity allows better mixture formation, however avoiding distinct charge motions (such as tumble or swirl). Simple intake port geometry increases the full load performance. The combustion concept, at the same time allows stratified charge to be used at higher load and at higher engine speeds and improves the homogeneous charge combustion. A new 3L in-line 6 gasoline engine with this combustion concept showed 20% better fuel economy than a 3L port fuel injection (PFI) engine (λ=1 feed back system) under the Japanese 10-15 mode.
Technical Paper

Spray Characteristics of an Ultrasonic Gasoline Injector Using a Micro Nozzle Array

2007-10-30
2007-32-0050
Effects of horn geometry on the atomization characteristics of an ultrasonic fuel injector using a micro nozzle array were investigated experimentally. Micro nozzles whose exit diameter d = 3 μm are mounted on a thin metal film. The number of the micro nozzles is from 2.0 × 104 to 1.2 × 105. Using an ultrasonic oscillator, gasoline is periodically pushed out from the micro nozzles at a frequency from 62 to 65 kHz. A disk type PZT (Lead zirconium titanate) is used as an ultrasonic oscillator, and the oscillation is amplified using a step-type horn. The input voltage to the PZT is varied from 0 to 200 V. To increase the fuel flow rate, the horn small end diameter DS is increased from 10.5 to 25 mm, while the large end diameter is fixed at 30 mm. To prevent forming a liquid film on the micro nozzle array, gutters are machined on the small end of the horn. It is shown that the SMD (Sauter mean diameter) of the spray is almost uniform around 10 to 14 μm.
X