Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Analysis of Unsteady Heat Transfer on Periodical Flow in Intake Port Model

2009-04-20
2009-01-1507
The experiments were done in order to obtain the fundamental information that would be needed to build a physical model which expresses the heat transfer phenomena in the intake port model and manifold. In the experiments, the heating conditions and the period of the cyclic change of the gas velocity were changed as experimental parameters. In addition to those parameters, the Strouhal number was applied to express oscillating flow. As a result, the heat transfer in the experiments became clear, and the equations were obtained to show the Nusselt number using the Reynolds number, the Graetz number and the Strouhal number.
Technical Paper

Precise Measurement of Heat Transfer to the Inlet Air using Intake Port Model

2005-04-11
2005-01-0999
Temperature measurement experiments with intake port model were done to achieve the fundamental information on constructing physical model that expresses the heat transfer phenomena in the intake manifold and intake port. The experiments were done with steady airflow, and the size, shape, heating condition of the port model and mass flow rate were changed as experimental parameters. As the results, it was clear that the developing condition of velocity and thermal boundary layer had greater influence than the shape factor, and the coefficient and the exponent of the equation derived from the relationship between Nusselt number and Reynolds number had great difference from those of generally used Colburn's equation in undeveloped entrance region, but they got closer as developing boundary layer.
Technical Paper

Modeling of Quasi-Steady State Heat Transfer Phenomena with the Consideration of Backflow Gas Effect at Intake Manifold of IC Engines and Its Numerical Analyses on 1-D Engine Simulation

2018-10-30
2018-32-0029
An empirical equation was developed for modeling the heat transfer phenomena taking place in an intake manifold which included the backflow gas effect. In literature, heat transfer phenomenon at intake system is modeled based on steady flow assumptions by Colburn analogy. Previously, authors developed an equation with the introduction of Graetz and Strouhal numbers, using a port model experimental setup. In this study, to further improve the empirical equation, real engine experiments were conducted where pressure ratio between the intake manifold and engine cylinder were added along with Reynolds number to characterize the backflow gas effect on intake air temperature. Compared to the experimental data, maximum and average errors of intake air temperature estimated from the new empirical equation were found to be 2.9% and 0.9%, respectively.
Technical Paper

Improvement of Quasi-Steady State Heat Transfer Model for Intake System of IC Engines with Considering Backflow Gas Effect Using 1-D Engine Simulation

2020-11-30
2020-32-2315
For improving the thermal efficiency and the reduction of hazardous gas emission from IC engines, it is crucial to model the heat transfer phenomenon starting from the intake system and predict the intake air’s mass and temperature as precise as possible. Previously, an empirical equation was constructed using an experimental setup of an intake port model of an ICE, in order to be implemented into an engine control unit and numerical simulation software for heat transfer calculations. The empirical equation was based on the conventional Colburn analogy with the addition of Graetz and Strouhal numbers. Introduced dimensionless numbers were used to characterize the entrance region, and intermittent flow effects, respectively.
Technical Paper

Modeling of Unsteady Heat Transfer Phenomena at the Intake Manifold of a Diesel Engine and Its Application to 1-D Engine Simulation

2017-11-05
2017-32-0097
In the past two decades, internal combustion engines have been required to improve their thermal efficiency in order to limit hazardous gas emissions. For further improvement of the thermal efficiency, it is required to predict the mass of intake air into cylinders in order to control the auto-ignition timing for CI engines. For an accurate prediction of intake air mass, it is necessary to model the heat transfer phenomena at the intake manifold. From this intention, an empirical equation was developed based on Colburn equation. Two new arguments were presented in the derived formula. The first argument was the addition of Graetz number, where it characterized the entrance region thermal boundary layer development and its effect on the heat transfer inside the intake manifold. As the second argument, Strouhal number was included in order to represent intake valve effect on heat transfer.
X