Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

IC-Engine Exhaust and Intake System Acoustic Source Characterization

2014-06-30
2014-01-2061
The paper gives an overview of techniques used for characterization of IC-engines as acoustic sources of exhaust and intake system noise. Some recent advances regarding nonlinear source models are introduced and discussed. To calculate insertion loss of mufflers or the level of radiated sound information about the engine as an acoustic source is needed. The source model used in the low frequency plane wave range is often the linear time invariant one-port model. The acoustic source data is obtained from experimental tests or from 1-D CFD codes describing the engine gas exchange process. The IC-engine is a high level acoustic source and in most cases not completely linear. It is therefore of interest to have models taking weak non-linearity into account while still maintaining a simple method for interfacing the source model with a linear frequency domain model for the attached exhaust or intake system.
Technical Paper

Development of Acoustic Models for High Frequency Resonators for Turbocharged IC-Engines

2012-06-13
2012-01-1559
Automotive turbo compressors generate high frequency noise in the air intake system. This sound generation is of importance for the perceived sound quality of luxury cars and may need to be controlled by the use of silencers. The silencers usually contain resonators with slits, perforates and cavities. The purpose of the present work is to develop acoustic models for these resonators where relevant effects such as the effect of a realistic mean flow on losses and 3D effects are considered. An experimental campaign has been performed where the two-port matrices and transmission loss of sample resonators have been measured without flow and for two different mean flow speeds. Models for two resonators have been developed using 1D linear acoustic theory and a FEM code (COMSOL Multi-physics). For some resonators a separate linear 1D Matlab code has also been developed.
Technical Paper

Sound Transmission in Automotive Turbochargers

2011-05-17
2011-01-1525
Turbochargers are common parts of a modern automotive engine. This paper presents an overview of the recent studies performed in the competence center for gas exchange studies at KTH on the sound transmission in turbochargers. The compressor and turbine of the turbochargers are treated as acoustic 2-ports and the scattering matrix for these devices are determined. A unique experimental facility established in the competence center for gas exchange research at KTH has been utilized to study the turbochargers at a variety of operating conditions systematically selected from compressor and turbine charts. A description of the experimental procedures to determine the acoustic 2-port data including techniques implemented to improve the quality of the results is presented. Results from a number of experiments on various modern automotive turbochargers including a unit with variable turbine geometry (VTG) are included.
X