Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Simulation Study on the Use of Argon Mixtures in the Pressurized Motored Engine for Friction Determination

2020-09-27
2020-24-0004
Mechanical friction and heat transfer in internal combustion engines are two highly researched topics, due to their importance on the mechanical and thermal efficiencies of the engine. Despite the research efforts that were done throughout the years on both these subjects, engine modeling is still somewhat limited by the use of sub-models which do not fully represent the phenomena happening in the engine. Developing new models require experimental data which is accurate, repeatable and which covers wide range of operation. In SAE 2018-01-0121, the conventional pressurized motored method was investigated and compared with other friction determination methods. The pressurized motored method proved to offer a good intermediate between the conventional motored tests, which offer good repeatability, and the fired tests which provide the real operating conditions, but lacks repeatability and accuracy.
Technical Paper

Reliable TDC position determination: a comparison of different thermodynamic methods through experimental data and simulations

2008-10-07
2008-36-0059
It is known to internal combustion researcher that the correct determination of the crank position when the piston is at Top Dead Centre (TDC) is very important, since an error of 1 crank angle degree (CAD) can cause up to a 10% evaluation error on indicated mean effective pressure (IMEP) and a 25% error on the heat released by the combustion: the TDC position should be then known within a precision of 0.1 CAD. This task can be accomplished by means of a dedicated capacitive sensor, which allows a measurement within the required 0.1 degrees precision. Such a sensor has a substantial cost and its use is not really fast; a different approach can be followed using a thermodynamic method, whose input is the pressure curve sampled during the compression and expansion strokes of a “motored” (i.e. without combustion) cylinder. In this work the authors compare an original thermodynamic method with other ones available in literature, by means of both experimental and simulated pressure curves.
Technical Paper

In-Cylinder Heat Transfer Determination Using Impulse Response Method with a Two-Dimensional Characterization of the Eroding Surface Thermocouple

2021-09-05
2021-24-0018
Heat transfer from the cylinder of internal combustion engines has been studied for decades, both in motored and fired configurations. Its understanding remains fundamental to the optimization of engine structures and sub-systems due to its direct effect on reliability, thermal efficiency and gaseous emissions. Experimental measurements are usually conducted using fast response surface thermometers, which give the instantaneous cylinder surface temperature. The transient component of heat flux through the cylinder wall was traditionally obtained from a spectral analysis of the surface temperature fluctuation, whereas the steady-state component was obtained from Fourier’s law of conduction. This computation inherently assumes that heat flows in one-dimension, perpendicular to the heated surface in a semi-infinite solid with constant thermo-physical properties.
Journal Article

An Experimental Study of In-Cylinder Heat Transfer from a Pressurized Motored Engine with Varying Peak Bulk Gas Temperatures

2022-03-29
2022-01-0271
The variation of in-cylinder heat transfer with parameters such as engine speed, air-to-fuel ratio, coolant temperature and compression ratio were frequently studied in classical research. These experimentally-obtained relationships are important for improving in-cylinder heat transfer models, essential in developing CO2 reducing strategies. In this publication, a 2.0 liter compression ignition engine was tested in the pressurized motored configuration. This developed experimental setup allowed testing of the engine at speeds ranging between 1400 rpm and 3000 rpm, with peak in-cylinder gas pressures from 40 bar to 100 bar. The engine was motored using different gas compositions chosen specifically to have ratios of specific heats of 1.40, 1.50, 1.60 and 1.67 at room temperature. This enabled motored testing with peak in-cylinder bulk gas temperatures ranging from 700 K to 1500 K.
Technical Paper

Experimental Investigation on the Use of Argon to Improve FMEP Determination through Motoring Method

2019-09-09
2019-24-0141
In the ever increasing challenge of developing more efficient and less polluting engines, friction reduction is of significant importance and its investigation needs an accurate and reliable measurement technique. The Pressurized Motoring method is one of the techniques used for both friction and heat transfer measurements in internal combustion engines. This method is able to simulate mechanical loading on the engine components similar to the fired conditions. It also allows measurement of friction mean effective pressure (FMEP) with a much smaller uncertainty as opposed to that achieved from a typical firing setup. Despite its advantages, the FMEP measurements obtained by this method are usually criticized over the fact that the thermal conditions imposed in pressurized motoring are far detached from those seen in fired conditions. In light of these considerations, the authors have put forward a modification to the method, employing Argon in place of Air as pressurization medium.
Journal Article

Further Experiments on the Effect of Bulk In-Cylinder Temperature in the Pressurized Motoring Setup Using Argon Mixtures

2020-04-14
2020-01-1063
Mechanical friction and heat transfer in internal combustion engines have long been studied through both experimental and numerical simulation. This publication presents a continuation study on a Pressurized Motoring setup, which was presented in SAE paper 2018-01-0121 and found to offer robust measurements at relatively low investment and running cost. Apart from the limitation that the peak in-cylinder pressure occurs around 1 DegCA BTDC, the pressurized motoring method is often criticized on the fact that the gas temperatures in motoring are much lower than that in fired engines, hence might reflect in a different FMEP measurement. In the work presented in SAE paper 2019-01-0930, Argon was used as the pressurization gas due to its high ratio of specific heats. This allowed to achieve higher peak in-cylinder temperatures which close further the gap between fired and motored mechanical friction tests.
X