Refine Your Search

Topic

Affiliation

Search Results

Journal Article

ERRATUM

2017-09-17
2017-01-2520.1
This is a errata for 2017-01-2520.
Journal Article

Signal Processing for Rough Road Detection

2010-04-12
2010-01-0673
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented.
Journal Article

Towards an Innovative Combination of Natural Gas and Liquid Fuel Injection in Spark Ignition Engines

2010-05-05
2010-01-1513
In order to address the CO₂ emissions issue and to diversify the energy for transportation, CNG (Compressed Natural Gas) is considered as one of the most promising alternative fuels given its high octane number. However, gaseous injection decreases volumetric efficiency, impacting directly the maximal torque through a reduction of the cylinder fill-up. To overcome this drawback, both independent natural gas and gasoline indirect injection systems with dedicated engine control were fitted on a RENAULT 2.0L turbocharged SI (Spark Ignition) engine and were adapted for simultaneous operation. The main objective of this innovative combination of gas and liquid fuel injections is to increase the volumetric efficiency without losing the high knocking resistance of methane.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Integrated Chassis Control for Improving On-Center Handling Behavior

2014-04-01
2014-01-0139
This paper proposes a new integrated chassis control (ICC) using a predictive model-based control (MPC) for optimal allocation of sub-chassis control systems where a predictive model has 6 Degree of Freedom (DoF) for rigid body dynamics. The 6 DoF predictive vehicle model consists of longitudinal, lateral, vertical, roll, pitch, and yaw motions while previous MPC research uses a 3 DoF maximally predictive model such as longitudinal, lateral and yaw motions. The sub-chassis control systems in this paper include four wheel individual braking torque control, four wheel individual driving torque control and four corner active suspension control. Intermediate control inputs for sub-chassis control systems are simplified as wheel slip ratio changes for driving and braking controls and vertical suspension force changes for an active suspension control.
Journal Article

Design and Testing of ABS for Electric Vehicles with Individually Controlled On-Board Motor Drives

2014-08-01
2014-01-9128
The paper introduces the results of the development of anti-lock brake system (ABS) for full electric vehicle with individually controlled near-wheel motors. The braking functions in the target vehicle are realized with electro-hydraulic decoupled friction brake system and electric motors operating in a braking mode. The proposed ABS controller is based on the direct slip and velocity control and includes several main blocks for computing of predictive (feedforward) and reactive (feedback) brake torque, wheel slip observer, slip target adaptation, and the algorithm of brake blending between friction brakes and electric motors. The functionality of developed ABS has been investigated on the HIL test rig for straight-line braking manoeuvres on different surfaces with variation of initial velocity. The obtained experimental results have been compared with the operation of baseline algorithm of a hydraulic ABS and have demonstrated a marked effect in braking performance.
Journal Article

Combination of Test with Simulation Analysis of Brake Groan Phenomenon

2014-04-01
2014-01-0869
During a car launch, the driving torque from driveline acts on brake disk, and may lead the pad to slip against the disk. Especially with slow brake pedal release, there is still brake torque applies on the disk, which will retard the rotation of disk, and under certain conditions, the disk and pad may stick again, so the reciprocated stick and slip can induce the noise and vibration, which can be transmitted to a passenger by both tactile and aural paths, this phenomenon is defined as brake groan. In this paper, we propose a nonlinear dynamics model of brake for bidirectional, and with 7 Degrees of Freedom (DOFs), and phase locus and Lyapunov Second Method are utilized to study the mechanism of groan. Time-frequency analysis method then is adopted to analyze the simulation results, meanwhile a test car is operated under corresponding conditions, and the test signals are sampled and then processed to acquire the features.
Journal Article

Wear-Induced Migration of Hot Bands: Models and Comparison with Experiments

2013-09-30
2013-01-2068
Although the radial migration of hot bands has been frequently observed, a systematic investigation of this phenomenon has not yet been performed. The ring-shaped temperature maximum, which occurs on the brake disk, is undesirable because the focused temperatures destroy the local materials in contact. Moreover, a hot band carries a dominant portion of the frictional load. If a hot band moves radially, the braking torque is directly influenced. It is supposed that material wear influences the radial hot band migration. New models demonstrate that wear is indeed the mechanism that triggers hot band migration. First, a minimal model including thermal expansion and a load-dependent loss of material is introduced. The simplicity of the model allows for an understanding of the impact of wear, as well as the mechanisms that lead to a periodic load distribution. This model can be analyzed in terms of complex eigenvalues, showing a periodic load distribution in the sliding plane.
Journal Article

Influence of the Tire Inflation Pressure Variation on Braking Efficiency and Driving Comfort of Full Electric Vehicle with Continuous Anti-Lock Braking System

2015-04-14
2015-01-0643
The presented study demonstrates results of experimental investigations of the anti-lock braking system (ABS) performance under variation of tire inflation pressure. This research is motivated by the fact that the changes in tire inflation pressure during the vehicle operation can distinctly affect peak value of friction coefficient, stiffness and other tire characteristics, which are influencing on the ABS performance. In particular, alteration of tire parameters can cause distortion of the ABS functions resulting in increase of the braking distance. The study is based on experimental tests performed for continuous ABS control algorithm, which was implemented to the full electric vehicle with four individual on-board electric motors. All straight-line braking tests are performed on the low-friction surface where wheels are more tended to lock.
Journal Article

Active Brake Judder Compensation Using an Electro-Hydraulic Brake System

2015-04-14
2015-01-0619
Geometric imperfections on brake rotor surface are well-known for causing periodic variations in brake torque during braking. This leads to brake judder, where vibrations are felt in the brake pedal, vehicle floor and/or steering wheel. Existing solutions to address judder often involve multiple phases of component design, extensive testing and improvement of manufacturing procedures, leading to the increase in development cost. To address this issue, active brake torque variation (BTV) compensation has been proposed for an electromechanical brake (EMB). The proposed compensator takes advantage of the EMB's powerful actuator, reasonably rigid transmission unit and high bandwidth tracking performance in achieving judder reduction.
Journal Article

Integrated Longitudinal Vehicle Dynamics Control with Tire/Road Friction Estimation

2015-04-14
2015-01-0645
The longitudinal dynamics control is an essential task of vehicle dynamics control. In present, it is usually applied by adjusting the slip ratio of driving wheels to achieve satisfactory performances both in stability and accelerating ability. In order to improve its performances, the coordination of different subsystems such as engine, transmission and braking system has to be considered. In addition, the proposed algorithms usually adopt the threshold methods based on less road condition information for simpleness and quick response, which cannot achieve optimal performance on various road conditions. In this paper, an integrated longitudinal vehicle dynamics control algorithm with tire/road friction estimation was proposed. First, a road identification algorithm was designed to estimate tire forces of driving wheels and the friction coefficient by the method of Kalman Filter and Recursive Least Squares (RLS).
Journal Article

On the Coupling Stiffness in Closed-Loop Coupling Disc Brake Model through Optimization

2015-04-14
2015-01-0668
The study and prevention of unstable vibration is a challenging task for vehicle industry. Improving predicting accuracy of braking squeal model is of great concern. Closed-loop coupling disc brake model is widely used in complex eigenvalue analysis and further analysis. The coupling stiffness of disc rotor and pads is one of the most important parameters in the model. But in most studies the stiffness is calculated by simple static force-deformation simulation. In this paper, a closed-loop coupling disc brake model is built. Initial values of coupling stiffness are estimated from static calculation. Experiment modal analysis of stationary disc brake system with brake line pressure and brake torques applied is conducted. Then an optimization process is initiated to minimize the differences between modal frequencies predicted by the stationary model and those from test. Thus model parameters more close to reality are found.
Journal Article

Development of ABS ECU with Hardware-in-the-Loop Simulation Based on Labcar System

2014-09-28
2014-01-2524
This paper presents how hardware-in-the-loop (HIL) simulations have been used for testing during the development of ABS (Anti-lock Braking System). The Labcar system of ETAS is a popular tool for HIL tests. The vehicle model which is built in Matlab/Simulink is downloaded to run in RTPC (Real-time PC). The Labcar software, Integration Platform (IP), can configure boards which is a link between the model and ABS ECU. In this paper, a classical logic threshold control algorithm is adopted in ABS ECU. Through Labcar Experiment Environment (EE) various parameters can be monitored and modified conveniently. The HIL test of ABS ECU is implemented on high or low - adhesion road respectively. The results show that, although response lag exists in the hydraulic braking system, the curves of velocity and pressure in wheel cylinders can be close to those on real road with proper adjustment of control parameters.
Journal Article

An Experimental Study of Turbocharged Hydrogen Fuelled Internal Combustion Engine

2015-01-14
2015-26-0051
Hydrogen is considered as one of the potential alternate fuel and when compared to other alternate fuels like CNG, LPG, Ethanol etc., it has unique properties due to absence of carbon. In the current work, Hydrogen engine of 2.5 L, four cylinder, spark ignited Turbocharged-Intercooled engine is developed for Mini Bus application. Multi-point fuel injection system is used for injecting the hydrogen in the intake manifold. Initially, boost simulation is performed to select the optimum compression ratio and turbocharger. The literature review has shown that in-order to get the minimum NOx emissions Hydrogen engines must be operated between equivalence ratios ranging from 0.5 to 0.6. In the present study, full throttle performance is conducted mainly with the above equivalence ratio range with minimum advance for Maximum Brake Torque (MBT) ignition timing. At each operating point, the performance, emissions and combustion parameters are recorded and analyzed in detail.
Technical Paper

Systems of Automatic Brake Torque Reduction on the Wheels of One Axle of the Car

2021-10-11
2021-01-1266
Braking mechanisms have the most variation in performance of all of the elements of the braking system. Instability of braking torques on the wheels of one axle of the vehicle leads to the appearance of the braking forces unevenness, and then- to the vehicle skidding during braking. At one time, the appearance of open-type disc brakes made it possible to reduce the unevenness of the braking forces on the sides of the car due to their higher characteristics of energy intensity and stability. However, the lack of feedback between the left and right disc brakes mounted on the same axle of the vehicle does not allow reducing the unevenness of the braking forces to an acceptable minimum. The authors of the work studied and proposed several systems for automatic reduction of the braking torques unevenness for braking mechanisms mounted on the wheels of one axle.
Journal Article

Study on Stability Control of Electrical Vehicle Based on Regenerative Braking System

2015-04-14
2015-01-1565
A regenerative braking system coordinated controller was developed for a front wheel drive BEV that also includes an ultra-capacitor storage system. This controller integrates the dual-motor regenerative braking with the hydraulic braking and stability control systems. The vehicle braking mode and the distribution of braking torque were determined according to the vehicle braking requirements, vehicle status and energy storage system (battery plus ultra-capacitor) state, and the stability control torque was provided according to the real-time vehicle stability condition. Simulation results show that, compared with a motor unilateral independence control strategy, the integrated coordinated controller improves the vehicle's stability when the vehicle corners while braking.
Journal Article

Performance Analysis of the ABS Control on Parallel Hybrid Electric Vehicle Equipped with Regenerative Braking System

2015-08-01
2015-01-9131
Anti-lock brake system (ABS) prevents the vehicle wheels from locking up and reduces the total stopping distance as far as possible. The current implementation is based on a traditional hydraulic disk brake and small wheel inertia. Seen the need for making vehicles cleaner in the future, it can be expected that an increasing the amount of vehicles will be equipped with electric motors able to regenerate energy during braking. The addition of this electric motor changes the properties of the brake actuation and has an influence on the wheel inertia. However, the objective of this paper is to study the change of the dynamics induced by the regenerative braking which assess the performance of traditional ABS systems on the parallel hybrid electric vehicles. The MATLAB software to establish the simulation model, which include the single wheel dynamic model, hydraulic brake system model, electric motor brake system model and traditional ABS controller were used.
Journal Article

Offline and Real-Time Optimization of EGR Rate and Injection Timing in Diesel Engines

2015-09-06
2015-24-2426
New methodologies have been developed to optimize EGR rate and injection timing in diesel engines, with the aim of minimizing fuel consumption (FC) and NOx engine-out emissions. The approach entails the application of a recently developed control-oriented engine model, which includes the simulation of the heat release rate, of the in-cylinder pressure and brake torque, as well as of the NOx emission levels. The engine model was coupled with a C-class vehicle model, in order to derive the engine speed and torque demand for several driving cycles, including the NEDC, FTP, AUDC, ARDC and AMDC. The optimization process was based on the minimization of a target function, which takes into account FC and NOx emission levels. The selected control variables of the problem are the injection timing of the main pulse and the position of the EGR valve, which have been considered as the most influential engine parameters on both fuel consumption and NOx emissions.
Journal Article

Relating Knocking Combustions Effects to Measurable Data

2015-09-06
2015-24-2429
Knocking combustions heavily influence the efficiency of Spark Ignition engines, limiting the compression ratio and sometimes preventing the use of Maximum Brake Torque (MBT) Spark Advance (SA). A detailed analysis of knocking events can help in improving the engine performance and diagnostic strategies. An effective way is to use advanced 3D Computational Fluid Dynamics (CFD) simulation for the analysis and prediction of the combustion process. The standard 3D CFD approach based on RANS (Reynolds Averaged Navier Stokes) equations allows the analysis of the average engine cycle. However, the knocking phenomenon is heavily affected by the Cycle to Cycle Variation (CCV): the effects of CCV on knocking combustions are then taken into account, maintaining a RANS CFD approach, while representing a complex running condition, where knock intensity changes from cycle to cycle.
Journal Article

Regenerative Braking Control for High Level Deceleration on Low Mu Surface

2015-05-01
2015-01-9141
Hybrid and electric vehicle (H/EV) technology is already well established in the automotive industry and a great majority of car manufacturers offer vehicles with alternative propulsion systems (hybrid or electric - H/E). This advancement, however, does not mean that all technical aspects of H/E propulsion systems have already been encapsulated or even fully understood. This statement is specifically valid for regenerative braking technology. In order to regenerate the maximum possible energy, which may be limited in real applications (e.g. by the charging ratio of the energy storage device(s)), the interaction of regenerative braking and the active driving safety systems (ADSSs) such as the anti-lock braking system (ABS) needs to be taken in to account. For maximum recaptured energy via electric motor (E-Motor) braking, the use of regenerative braking, which generates decelerations greater than 0.1g, should be deployed.
X