Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Flying Test Bed Performance Testing of High-Bypass-Ratio Turbofans

2009-11-10
2009-01-3133
The commercial turbofan trend of increasing bypass ratio and decreasing fan pressure ratio has seen its latest market entry in Pratt & Whitney's PurePower™ product line, which will power regional aircraft for the Bombardier and Mitsubishi corporations, starting in 2013. The high-bypass-ratio, low-fan-pressure-ratio trend, which is aimed at diminishing noise while increasing propulsive efficiency, combines with contemporary business factors including the escalating cost of testing and limited availability of simulated altitude test sites to pose formidable challenges for engine certification and performance validation. Most fundamentally, high bypass ratio and low fan pressure ratio drive increased gross-to-net thrust ratio and decreased fan temperature rise, magnifying by a factor of two or more the sensitivity of in-flight thrust and low spool efficiency to errors of measurement and assumption, i.e., physical modeling.
Journal Article

Utilization of Agricultural By-Products as Fillers and Reinforcements in ABS

2010-04-12
2010-01-0424
Lignocellulosic agricultural by-products can be utilized for an array of biocomposite material applications. Biocomposite properties can approach those of synthetic conventional composites. They are highly suitable for automotive applications, where the thrust is toward fuel economy, weight-reduction, and higher renewability. A common automotive polymer for biocomposite application is alloyed acrylonitrile butadiene styrene (ABS), whose extensive usage can be attributed to its exceptional balance of properties. However, the low sustainability of ABS in environmental degradation entails the addition of fillers. In this study, the UV blocking properties of lignin component of natural fibers will be analyzed for their use as additives in a natural ABS grade and will be compared to an ABS grade compounded with a traditional UV inhibitor.
Journal Article

Contact Fatigue Wear Evaluation of Thrust Rolling Bearings Lubricated With Greases With Molybdenum Disulfide Or Graphite

2010-05-05
2010-01-1546
The wear of thrust 51100 rolling bearings was investigated and their dissipative responses in a bench test rig were associated to their heating, elastic energy of mechanical vibration and Sound Pressure Level [dB], regarding two greases, both from the same supplier, being one with graphite and the other with Molybdenum Disulfide. The samples were commercially acquired and submitted to a normal load of 450±5N and 3100±30 CPM, determined after the screening tests. Four variables were measured: temperature [K], electrical power [W], global velocity vibration [mm/s] and Sound Pressure Level [dB]. After 106 cycles, the tracks were analyzed by Optical Microscopy. The bearings lubricated with the grease with graphite showed different responses in relation to the ones lubricated with MoS2 thrust bearings. The signal of the signatures and the damage morphology are presented and discussed.
Journal Article

A Comparison between Regular and Vibration-Assisted Drilling in CFRP/Ti6Al4V Stack

2014-09-16
2014-01-2236
As aircraft programs currently ramp up, productivity of assembly processes needs to be improved while keeping quality, reliability and manufacturing cost requirements. Efficiency of the drilling process still remains an issue particularly in the case of CFRP/metal stacks: hot and long metallic chips are difficult to remove and often damage the surface of CFRP holes. Low frequency axial vibration drilling has been proposed to solve this issue. This innovative drilling process allows breaking up the metallic chips in such a way that jamming is avoided. This paper presents a case of CFRP/Ti6Al4V drilling on a CNC machine where productivity must be increased. A comparison is made between the current regular process and the MITIS drilling process. First the analysis and comparison method is presented. The current process is analyzed and its limits are highlighted. Then the vibration process is implemented and its performances are studied.
Journal Article

Computational Study of Coanda Adhesion Over Curved Surface

2013-09-17
2013-01-2302
This paper presents a set of numerical computations with different turbulence model on an air jet flowing tangentially over the curved surface. It has been realized that jet deflection angle and the corresponding thrust are important parameter to determine with great care. Through the grid independence analysis, it has been found that without resolution of the viscous sub-layer, it is not possible to determine the computationally independent angle of jet deflection and boundary layer thickness. The boundary layer analysis has been performed at different radius of curvature and at jet Reynolds number ranging from approximately about 2400-10,000. The boundary layer thickness has been determined at the verge of separation and found a relation with the radius of curvature and jet Reynolds number. The skin-friction coefficient has been also studied at the verge of separation in relation to the surface radius and jet Reynolds number.
Journal Article

Self-Adjusting Cutting Parameter Technique for Drilling Multi-Stacked Material

2015-09-15
2015-01-2502
This study investigates the self-adjusted cutting parameter technique to improve the drilling of multi-stacked material. The technique consists in changing the cutting strategy automatically, according to the material being machined. The success of this technique relies on an accurate signal analysis, whatever the process setting. Motor current or thrust force are mostly used as incoming signals. Today, analyses are based on the thresholding method. This consists in assigning lower and upper limits for each type of material. The material is then identified when the signal level is stabilized in between one of the thresholds. Good results are observed as long as signal steps are significantly distinct. This is the case when drilling TA6V-CFRP stacks. However, thrust force level remains roughly unchanged for AA7175-CFRP stacks, leading to overlapping thresholds. These boundary limits may also change with tool geometry, wear condition, cutting parameters, etc.
Journal Article

A Method for the Evaluation of the Effectiveness of Turboelectric Distributed Propulsion Power System Architectures

2014-09-16
2014-01-2120
Radical new electrically propelled aircraft are being considered to meet strict future performance goals. One concept design proposed is a Turboelectric Distributed Propulsion (TeDP) aircraft that utilises a number of electrically driven propulsors. Such concepts place a new and significant reliance on an aircraft's electrical system for safe and efficient flight. Accordingly, in addition to providing certainty that supply reliability targets are being met, a contingency analysis, evaluating the probability of component failure within the electrical network and the impact of that failure upon the available thrust must also be undertaken for architecture designs. Solutions that meet specified thrust requirements at a minimum associated weight are desired as these will likely achieve the greatest performance against the proposed emissions targets.
Journal Article

NASA System-Level Design, Analysis and Simulation Tools Research on NextGen

2011-10-18
2011-01-2716
A review of the research accomplished in 2009 in the System-Level Design, Analysis and Simulation Tools (SLDAST) of the NASA's Airspace Systems Program is presented. This research thrust focuses on the integrated system-level assessment of component level innovations, concepts and technologies of the Next Generation Air Traffic System (NextGen) under research in the ASP program to enable the development of revolutionary improvements and modernization of the National Airspace System. The review includes the accomplishments on baseline research and the advancements on design studies and system-level assessment, including the cluster analysis as an annualization standard of the air traffic in the U.S. National Airspace, and the ACES-Air MIDAS integration for human-in-the-loop analyzes within the NAS air traffic simulation.
Journal Article

Trade Studies for NASA N3-X Turboelectric Distributed Propulsion System Electrical Power System Architecture

2012-10-22
2012-01-2163
This paper outlines power system architecture trades performed on the N3-X hybrid wing body aircraft concept under NASA's Research and Technology for Aerospace Propulsion (RTAPS) study effort. The purpose of the study to enumerate, characterize, and evaluate the critical dynamic and safety issues for the propulsion electric grid of a superconducting Turboelectric Distributed Propulsion (TeDP) system pursuant to NASA N+3 Goals (TRL 4-6: 2025, EIS: 2030-2035). Architecture recommendations focus on solutions which promote electrical stability, electric grid safety, and aircraft safety. Candidate architectures were developed and sized by balancing redundancy and interconnectivity to provide fail safe and reliable, flight critical thrust capability. This paper outlines a process for formal contingency analysis used to identify these off-nominal requirements. Advantageous architecture configurations enabled a reduction in the NASA's assumed sizing requirements for the propulsors.
Journal Article

Numerical and Experimental Investigation of the Piezoelectric Flapping Wing Micro-Air-Vehicles Propulsion

2012-10-20
2012-01-2245
The flapping flight is advantageous for its superior maneuverability and much more aerodynamically efficiency for the small size UAV when compared to the conventional steady-state aerodynamics solution. Especially, it is appropriate for the Micro-air-vehicle (MAV) propulsion system, where the flapping wings can generate the required thrust. This paper investigated such solution, based on the piezoelectric patches, which are attached to the flexible plates, in combination with an appropriate amplification mechanisms. The numerical and experimental flow analyses have been carried out for the piezoelectric flapping plate, in order to characterize the fluid structure interaction induced by the swinging movement of the oscillating plate.
Technical Paper

Control of Active Suspension with Parameter Uncertainty and Non-White Road Unevenness Disturbance Input

1990-10-01
902283
Filtering the road unevenness, i.e. comfortable ride for passengers, and vibration and shock isolation for freight, is one of the main thrusts behind the development of active and semi-active suspensions. For control of these systems, a variety of different schemes, mainly from the linear stochastic control area, have been proposed by researchers: and 1/4-car active and semi-active suspension models are used to simulate these schemes. Besides the main input an exogenous input is also considered, namely a velocity disturbance originating from the road unevenness. In most of the literature in this area, this disturbance is considered as white noise, which it hardly is. This a-priori statistical description of the disturbances, is necessary for using stochastic control techniques. In this paper, a comparison of some of these control schemes is performed.
Technical Paper

Measurements: A Key to Quality

1991-04-01
910949
To remain competitive the United States must change its way of doing business. We must learn to produce the highest quality product at a competitive cost. There are many things that must be done to attain this goal. This paper addresses only one - measurements. The role of measurements in the decision making process will be addressed. The main thrust is the discussion of the elements of a measurement, modeling a measurement and error analysis.
Technical Paper

Enhancing Fighter Engine Airstarting Capability

1991-04-01
911190
In addition to designing fighter engines for stall-free idle to maximum power operation and stall recoverability, it is important to give proper emphasis to sub-idle operation for successful starting. This permits the pilot to confidently bring the engine on-line following an inadvertent flameout caused by either the airplane departing the flight envelope or by a fuel interrupt due to a malfunction. Thus reliable and fast airstart capability enhances flight safety especially of single engine airplanes. Flight testing, therefore, is substantially devoted to airstart evaluation. The paper first explains the influence of engine design features on airstarting, particularly the advantages of the low bypass ratio cycle F100-PW-229 (PW229) engine, which is an increased thrust derivative (IPE) of the highly successful F100-PW-220 engine. Enhancing airstarting capability of the PW229 using variable geometry features and digital control flexibility is discussed.
Technical Paper

A Subscale Facility for Liquid Rocket Propulsion Diagnostics at Stennis Space Center

1991-04-01
911126
The Diagnostics Tested Facility (DTF) at NASA's John C. Stennis Space Center (SSC) in Mississippi was designed to provide a testbed for development of rocket engine exhaust plume diagnostics instrumentation. A 1200-lb thrust liquid oxygen (LOX)/gaseous hydrogen (GH2) thruster is used as the plume source for experimentation and instrument development. Theoretical comparative studies have been performed with aero-thermodynamic codes to ensure that the DTF thruster (DTFT) has been optimized to produce a plume with pressure and temperature conditions as much like the plume of the Space Shuttle Main Engine (SSME) as possible. Operation of the DTFT is controlled by an icon-driven software program using a series of soft switches. Data acquisition is performed using the same software program. A number of plume diagnostics experiments have utilized the unique capabilities of the DTF.
Technical Paper

Two Stage Fully Reusable Space Launch Vehicle Configuration and Performance Trades

1991-04-01
911184
There is a need for a space launch system that can provide ready, reliable, unencumbered access to space. The need exists for a highly reliable launch system that can operate from numerous available sites, that can provide all azimuth launch capability, that is fully reusable, and that can carry significant payloads into low earth orbit. A vehicle concept was developed to demonstrate the ability of near term aeromechanics and propulsion technology to support such a system. The vehicle was composed of two stages. The system takes off horizontally and both stages return to a horizontal landing. Turbojet, ramjet, and rocket propulsion is used. The sensitivity of the system to thrust, drag, weight, and staging Mach number was examined. The two stage system is able to accommodate a range of performance variations yet still retain significant mission potential.
Technical Paper

Propulsion Systems with Air Precooling for Aerospaceplane

1991-04-01
911182
Using LH2 heat sink capacity for air precooling in turbojets allows to increase specific impulse and in many cases to reduce specific mass (mass-to-sea level thrust ratio). A number of precooled turbojet schemes are considered. Classification of turbojet according to the cooled air amount and depth of cooling is proposed. ATR with extended precooling (Tout=100K) is examined in more detail. For propulsion systems including different types of engines, running simultaneously the concept of LH2 heat sink capacity concentration for turbojet air precooling is proposed.
Technical Paper

Use of Thrust Vectoring and Reversing on the S/MTD

1991-04-01
911173
A main objective of the STOL and Maneuver Technology Demonstrator, (S/MTD) Program was to evaluate the operability and performance of its unique engine/nozzle configuration which can deliver thrust in three different modes; conventional, vectored and through variable vanes which give the option of going from forward to reverse thrust. The two-dimensional nozzle and the modified engine were extensively tested during sea level and altitude testing to satisfy all flight clearance requirements. This paper concentrates on the flight test results of the various modes of vectoring and reversing ending with a compilation of the actual usage of the propulsive controls that could be used by designers of similar advanced propulsion systems.
Technical Paper

Numerical Simulation of Propulsion-Induced Aerodynamic Characteristics on a Wing-Afterbody Configuration with Thrust Vectoring

1991-04-01
911174
Aerodynamic effects induced from vectoring an exhaust jet are investigated using a well established thin-layer Reynolds averaged Navier-Stokes code. This multiple block code has been modified to allow for the specification of jet properties at a block face. The applicability of the resulting code for thrust vectoring applications is verified by comparing numerically and experimentally determined pressure coefficient distributions for a jet-wing afterbody configuration with a thrust-vectoring 2-D nozzle. Induced effects on the body and nearby wing from thrust vectoring are graphically illustrated.
Technical Paper

Life of the Airframe Maintenance Free Battery

1991-04-01
911161
This paper presents an overview on an Air Force initiative aimed at increasing the performance and reliability of aircraft batteries. A major thrust of the initiative is the elimination of flight line battery maintenance shops. Cost savings, increased mission capability and battle readiness are the pay-offs that will be realized from this effort. Current maintenance requirements for vented nickel-cadmium (Ni-Cd) batteries used in most U.S. military aircraft are unacceptable. This paper addresses other available technology options, decisions made to date and benefits that will result from this effort to increase the performance and reliability of aircraft batteries.
Technical Paper

Aerodynamic Performance of Wing-Body Configurations and the Flying Wing

1991-04-01
911019
An elementary analysis has been made of generic wing-body configurations with variable volume allotment in wing and body, for constant total useful volume, including the all-wing configuration. These aircraft were compared on the basis of the Lift-to-Drag (L/D) ratio, for specified flight conditions. In addition the parameter ML/D for constant corrected thrust has been optimized, resulting in certain combinations of altitude and speed for maximum specific range (if corrected TSFC = constant). Finally, the effect of volume allotment on L/D for given engine size was studied. It has been found that in many cases optimum volume allotments indicate that wing-body combinations are to be favored. Only in the case of relatively low Mach numbers and high-altitude flight the flying wing outperforms conventional aircraft, but it will generally require larger engines.
X