Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Mechanical Behavior and Failure Mechanism of Nb-Clad Stainless Steel Sheets

2009-04-20
2009-01-1393
Because niobium-clad 304L stainless steel sheets are considered for use as bipolar plates in polymer electrolyte membrane (PEM) fuel cells, their mechanical behavior and failure mechanism are important to be examined. As-rolled and annealed specimens were tested in tension, bending and flattening. The effects of annealing temperature and time on the mechanical behavior and failure mechanism were investigated. Micrographic analyses of bent and flattened specimens showed that the as-rolled specimens have limited ductility and that the annealed specimens can develop an intermetallic layer of thickness of a few microns. The annealed specimens failed due to the breakage of intermetallic layer causing localized necking and the subsequent failure of Nb layer. The springback angles of the as-rolled and annealed specimens were also obtained from guided-bend tests.
Journal Article

Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy

2009-04-20
2009-01-1357
The local equivalence ratio, Φ, was measured in fuel jets using laser-induced spontaneous Raman scattering in an optical heavy duty diesel engine. The measurements were performed at 1200 rpm and quarter load (6 bar IMEP). The objective was to study factors influencing soot formation, such as gas entrainment and lift-off position, and to find correlations with engine-out particulate matter (PM) levels. The effects of nozzle hole size, injection pressure, inlet oxygen concentration, and ambient density at TDC were studied. The position of the lift–off region was determined from OH chemiluminescence images of the flame. The liquid penetration length was measured with Mie scattering to ensure that the Raman measurement was performed in the gaseous part of the spray. The local Φ value was successfully measured inside a fuel jet. A surprisingly low correlation coefficient between engine-out PM and the local Φ in the reaction zone were observed.
Journal Article

Entrainment Waves in Diesel Jets

2009-04-20
2009-01-1355
Recent measurements in transient diesel jets have shown that fuel in the wake of the injection pulse mixes with ambient gases more rapidly than in a steady jet. This rapid mixing after the end of injection (EOI) can create fuel-lean regions near the fuel injector. These lean regions may not burn to completion for conditions where autoignition occurs after EOI, as is typical of low-temperature combustion (LTC) diesel engines. In this study, transient diesel jets are analyzed using a simple one-dimensional jet model. The model predicts that after EOI, a region of increased entrainment, termed the “entrainment wave,” travels downstream at twice the initial jet propagation rate. The entrainment wave increases mixing by up to a factor of three. This entrainment wave is not specific to LTC jets, but rather it is important for both conventional diesel combustion and LTC conditions.
Journal Article

SCR Catalyst Systems Optimized for Lightoff and Steady-State Performance

2009-04-20
2009-01-0901
A laboratory study was performed to optimize a zoned configuration of an iron (Fe) SCR catalyst and a copper (Cu) SCR catalyst in order to provide high NOx conversion at lean A/F ratios over a broad range of temperature for diesel and lean-burn gasoline applications. With an optimized space velocity of 8,300 hr-1, a 67% (by volume) Fe section followed by a 33% Cu section provided at least 80% NOx conversion from approximately 230°C to 640°C when evaluated with 500 ppm NO and NH3. To improve the lean lightoff performance of the SCR catalyst system during a cold start, a Cu SCR catalyst that was 1/4 as long as the rear Cu SCR catalyst was placed in front of the Fe SCR catalyst. When evaluated with an excess of NH3 (NH3/NO ratio of 2.2), the Cu+Fe+Cu SCR system had significantly improved lightoff performance relative to the Fe+Cu SCR system, although the front Cu SCR catalyst did decrease the NOx conversion at temperatures above 475°C by oxidizing some of the NH3 to N2 or NO.
Journal Article

The Poisoning and Desulfation Characteristics of Iron and Copper SCR Catalysts

2009-04-20
2009-01-0900
A laboratory study was performed to assess the effects of SO2 poisoning on the NOx conversion of iron (Fe) and copper (Cu) SCR catalysts. Thermally aged samples of the catalysts were poisoned with SO2 under lean conditions. At various times during the poisonings, the samples were evaluated for NOx conversion with NO and NH3 using lean temperature ramps. The low temperature NOx conversions of both catalysts decreased by 10 to 20% after 1 to 4 hours of poisoning but were stable with continued exposure to the SO2. The poisoned Cu SCR catalyst could be desulfated repeatedly with 5 minutes of lean operation at 600°C. Initially, the poisoned Fe SCR catalyst required 5 minutes of lean operation at 750°C to recover its maximum NOx conversion.
Journal Article

Development of Flax Fibre Reinforced Biocomposites for Potential Application for Automotive Industries

2009-10-06
2009-01-2867
{ Natural fibre-reinforced composite has the potential to replace current materials used for automotive industrial applications. Oilseed flax fibre could be used as reinforcement for composites because it is readily available, environmentally friendly and possesses good mechanical properties. In this research, oilseed flax fibre reinforced-LLDPE and -HDPE biocomposites were developed through extrusion and injection molding. The flax fibre was chemically treated to improve the bond between the fibre and polymer. Flax fibre was mixed with low linear density polyethylene (LLDPE) and high density polyethylene (HDPE) with fibre content varying from 10 to 30% by mass and processed by extrusion and injection molding to biocomposites. The mechanical properties, surface properties, and thermal properties of biocomposites were measured to analyze the treatment and processing effect and to compare the effect of different flax fibre concentrations on the biocomposites.
Journal Article

Effects of Chemical Components and Manufacturing Process of Cast Iron Brake Disc on its Resonant Frequency Variation

2009-10-11
2009-01-3030
Many engineers have been working to reduce brake noise in many ways for a long time. So far, a progress has been made in preventing and predicting brake noise. Nevertheless, there are some discrepancies of brake noise generation propensity between testing for the prototype and the production. As known in general, the reason for this unpredicted brake noise occurrence in production is partly due to the variation of the resonant frequency, material and the other unpredictable or unmanageable variations of the components in a brake system. In this paper, effects of chemical components and casting process of gray iron brake disc on its resonant frequency variation have been studied. Especially this paper is focused on the variation in material aspects and manufacturing parameters during disc casting in usual production condition. And their effects are investigated by the variation of out-of-plane modal resonant frequency.
Journal Article

Testing of 300 Series Stainless Steel Tubing for Aerospace Applications

2009-11-10
2009-01-3257
The applicability, interpretation, and implementation of the testing requirements, in various aerospace and military tubing material specifications have caused confusion across the tubing industry. Despite the release of AMS specifications, procurement entities continue to purchase material produced to the older and often cancelled Mil-T specifications. In addition to mechanical properties, these specifications cover requirements including composition, grain size, heat treating, passivation, pressure testing, formability, non-destructive testing, and sampling frequency. Confusion may result for tubing producers who also supply commercial grade tubing having similar mechanical properties aerospace tubing. Ultimately it is the responsibility of the tubing manufacturer to understand the risks involved in meeting the requirements of the aerospace material specifications, both Military and AMS.
Journal Article

Residual Stress Analysis of Punched Holes in 6013 Aluminum Alloy Commercial Vehicle Side Rails

2010-10-05
2010-01-1909
Compliance with tighter emission regulations has increased the proportion of parasitic weight in commercial vehicles. In turn, the amount of payload must be reduced to comply with transportation weight requirements. A re-design of commercial vehicle components is necessary to decrease the vehicle weight and improve payload capacity. Side rails have traditionally been manufactured from high strength steels, but significant weight reductions can be achieved by substituting steel side rails with 6013 high strength aluminum alloy side rails. Material and stress analyses are presented in this paper in order to understand the effect of manufacturing process on the material's mechanical behavior. Metallographic and tensile test experiments for the 6013-T4 alloy were performed in preparation for residual stress measurements of a punching operation. Punched holes are critical to the function of the side rail and can lead to high stress levels and cracking.
Journal Article

Impact of Fiber Loading on Injection Molding Processing Parameter and Properties of Biocomposite

2010-10-05
2010-01-2026
The research on using natural fibres as the reinforcement in plastic composites has increased dramatically in the last few years. Flax fibres are renewable resources with low specific mass, reduced energy consumption, and relatively low in cost. These advantages make flax fibres recognized as a potential replacement for glass fibres in composites. Among plastic, polyethylene was concluded to be a suitable material used as matrix in natural fibre reinforced biocomposites. However there are few studies on this area so far. In this paper, the processing method of flax fibre-reinforced polyethylene biocomposites is introduced. Flax fibre polyethylene biocomposite consists of flax fibre as the reinforcing component and high density polyethylene as the matrix. Acrylic acid pre-treatment was applied to flax fibre to improve the bonding between fibre and polyethylene.
Journal Article

Loading Path Dependence of Forming Limit Diagram of a TRIP800 Steel

2011-04-12
2011-01-0019
In this paper, the microstructure-based finite element modeling method is used in investigating the loading path dependence of formability of transformation induced plasticity (TRIP) steels. For this purpose, the effects of different loading path on the forming limit diagrams (FLD) of TRIP steels are qualitatively examined using the representative volume element (RVE) of a commercial TRIP800 steel. First, the modeling method was introduced, where a combined isotropic/kinematic hardening rule is adopted for the constituent phases in order to correctly describe the cyclic deformation behaviors of TRIP steels during the forming process with combined loading paths which may include the unloading between the two consecutive loadings. Material parameters for the constituent phases remained the same as those in the authors' previous study [ 1 ] except for some adjustments for the martensite phase due to the introduction of the new combined hardening rule.
Journal Article

A Mixed-Mode Fracture Criterion for AHSS Cracking Prediction at Large Strain

2011-04-12
2011-01-0007
Predicting AHSS cracking during crash events and forming processes is an enabling technology for AHSS application. Several fracture criteria including MatFEM and Modified Mohr-Coulomb Criterion were developed recently. However, none of them are designed to cover more fracture modes such as bending fracture and tearing fracture with initial damage. A mixed-mode fracture criterion (MMFC) is proposed and developed to capture multiple fracture modes including in-plane shearing fracture, cross-thickness shearing fracture with bending effect and tearing fracture with initial damage. The associated calibration procedure for this criterion is developed. The criterion is implemented in a commercial FEA code and several lab validations are conducted. The results show its promising potential to predict AHSS cracking at large strain conditions.
Journal Article

Fracture Modeling of AHSS in Component Crush Tests

2011-04-12
2011-01-0001
Advanced High Strength Steels (AHSS) have been implemented in the automotive industry to balance the requirements for vehicle crash safety, emissions, and fuel economy. With lower ductility compared to conventional steels, the fracture behavior of AHSS components has to be considered in vehicle crash simulations to achieve a reliable crashworthiness prediction. Without considering the fracture behavior, component fracture cannot be predicted and subsequently the crash energy absorbed by the fractured component can be over-estimated. In full vehicle simulations, failure to predict component fracture sometimes leads to less predicted intrusion. In this paper, the feasibility of using computer simulations in predicting fracture during crash deformation is studied.
Journal Article

Scuffing Resistance of Surface Treated 8625 Alloy Steels

2011-04-12
2011-01-0034
Scuffing is a common source of failure for many mechanical components in automobiles. 8625 alloy steel is commonly used in camshafts, gears, piston pins, shafts, and splines. The purpose of the research is to study the scuffing resistance of non-treated, carburized, nitrocarburized, and carbonitrided 8625 alloy steels. The scuffing resistance of the 8625 alloy steels was determined through pin-on-disk tests. The hardness and microstructure of the disks were analyzed using electron microscopy to determine wear mechanisms for each surface treated steel. The wear mechanisms were then related to the scuff resistance of the various materials.
Journal Article

Neutron Diffraction Studies of Intercritically Austempered Ductile Irons

2011-04-12
2011-01-0033
Neutron diffraction is a powerful tool that can be used to identify the phases present and to measure the spacing of the atomic planes in a material. Thus, the residual stresses can be determined within a component and/or the phases present. New intercritically austempered irons rely on the unique properties of the austenite phase present in their microstructures. If these materials are to see widespread use, methods to verify the quality (behavior consistency) of these materials and to provide guidance for further optimization will be needed. Neutron diffraction studies were performed at the second generation neutron residual stress facility (NRSF2) at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory on a variety of intercritically austempered irons. For similar materials, such as TRIP steels, the strengthening mechanism involves the transformation of metastable austenite to martensite during deformation.
Journal Article

Self-Pierce Riveting of Magnesium to Aluminum Alloys

2011-04-12
2011-01-0074
Magnesium and aluminum alloys offer lightweighting opportunities in automotive applications. Joining of dissimilar materials, however, generally requires methods that do not involve fusion. This paper explores the use of self-pierce riveting (SPR) to join magnesium to aluminum alloys for structural and closure applications. The preliminary results indicate that SPR is a viable option for joining aluminum extrusions to magnesium die castings, as well as stamped sheet aluminum to quick-plastic-formed (QPF) sheet magnesium.
Journal Article

Structural Evaluation of an Experimental Aluminum/Magnesium Decklid

2011-04-12
2011-01-0075
Experimental decklids for the Cadillac STS sedan were made with Al AA5083 sheet outer panels and Mg AZ31B sheet inner panels using regular-production forming processes and hardware. Joining and coating processes were developed to accommodate the unique properties of Mg. Assembled decklids were evaluated for dimensional accuracy, slam durability, and impact response. The assemblies performed very well in these tests. Explicit and implicit finite element simulations of decklids were conducted, and showed that the Al/Mg decklids have good stiffness and strength characteristics. These results suggest the feasibility of using Mg sheet closure panels from a structural perspective.
Journal Article

Method and System for Making a Fuel-tank Inert without an Inert Gas

2009-11-10
2009-01-3134
In Chemistry “Inert” implies ‘not readily reactive with other elements; forming few or no chemical compounds or something that is not chemically active’. “Inerting” is the process that renders a substance inert. A method for making a fuel-tank inert without the use of an inert gas is described. In this method fuel-air ratio of ullage is reduced until it becomes inert. The method does not discharge fuel vapors as an inert gas inerting system. Two systems employing the method are described explaining their pros and cons. Advantages of the method over Nitrogen Enriched Air (NEA) inerting method with an On-board Inert Gas Generating System (OBIGGS) are discussed. Patent application on the method and system is pending.
Journal Article

Optimized Design Solutions for Roof Strength Using Advanced High Strength Steels

2010-04-12
2010-01-0214
In August 2005, National Highway Traffic Safety Administration (NHTSA) proposed to increase the roof strength requirement under Federal Motor Vehicle Safety Standard (FMVSS) 216 from 1.5 to 2.5 times unloaded vehicle weight (UVW). To meet the new requirement with a minimum impact on vehicle weight and cost, the automotive community is working actively to develop improved roof architectures using advanced high strength steels (AHSS) and other lightweight materials such as structural foam. The objective of this study is to develop an optimized steel-only solution with low material and part-manufacturing costs. Since the new regulation will present a particular challenge to the roof architectures of large vans, pickup trucks and SUVs due to their large mass and size, a validated roof crush model on a B-Pillar-less light truck is utilized in this study.
Journal Article

Locally Austempered Ductile Iron (LADI)

2010-04-12
2010-01-0652
There are numerous component applications that would benefit from localized austempering (heat treating only a portion of the component) for either improved wear properties or fatigue strength. Currently available methods for “surface austempering” of ductile iron are often expensive and not as well controlled as would be desired. This study was undertaken to find a better process. Locally Austempered Ductile Iron (LADI) is the result of those efforts. LADI is a surface hardening heat treatment process that will produce a localized case depth of an ausferrite microstructure (ADI) in a desired area of a component. This process has been jointly developed by Ajax Tocco Magnethermic Corporation (ATM) and Applied Process, Inc.- Technologies Division (AP) with support and collaboration from ThyssenKrupp Waupaca, Inc. (TKW). This paper describes the outcome of using this patent pending process (US #65/195,131).
X